基于缝隙波导的高增益缝隙天线阵列高频电子集成概念综述

A. Zaman, A. Vosoogh, Jian Yang, V. Vassilev, H. Zirath
{"title":"基于缝隙波导的高增益缝隙天线阵列高频电子集成概念综述","authors":"A. Zaman, A. Vosoogh, Jian Yang, V. Vassilev, H. Zirath","doi":"10.1109/COMCAS44984.2019.8958272","DOIUrl":null,"url":null,"abstract":"This paper presents an overview of different low-loss microstrip to waveguide transition designs suitable for integrating millimeter wave electronics to a gap waveguide based slot array. Typically, E-plane probe type of transitions are widely used at mmWave frequency range to couple RF signal from a TX/RX MMIC to the waveguide section. H-plane split-blocks are avoided due to leakage problem from tiny slits formed by imperfect metal connections. On the other hand, the traditional slot arrays are built using H-plane split blocks. This makes it very challenging to integrate electronics and other passive components such as diplexer filter directly to a high gain planar antenna array. To overcome this above mentioned problem, we propose to use low-loss H-plane transitions to integrate RF electronics with the multi-layer gap waveguide based slot array. We demonstrate a completely packaged frontend at E-band, showing the potential of the gap waveguide technology to build a very compact full-duplex wireless system.","PeriodicalId":276613,"journal":{"name":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of High Frequency Electronics Integration Concepts for Gap waveguide based High Gain Slot Antenna Array\",\"authors\":\"A. Zaman, A. Vosoogh, Jian Yang, V. Vassilev, H. Zirath\",\"doi\":\"10.1109/COMCAS44984.2019.8958272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an overview of different low-loss microstrip to waveguide transition designs suitable for integrating millimeter wave electronics to a gap waveguide based slot array. Typically, E-plane probe type of transitions are widely used at mmWave frequency range to couple RF signal from a TX/RX MMIC to the waveguide section. H-plane split-blocks are avoided due to leakage problem from tiny slits formed by imperfect metal connections. On the other hand, the traditional slot arrays are built using H-plane split blocks. This makes it very challenging to integrate electronics and other passive components such as diplexer filter directly to a high gain planar antenna array. To overcome this above mentioned problem, we propose to use low-loss H-plane transitions to integrate RF electronics with the multi-layer gap waveguide based slot array. We demonstrate a completely packaged frontend at E-band, showing the potential of the gap waveguide technology to build a very compact full-duplex wireless system.\",\"PeriodicalId\":276613,\"journal\":{\"name\":\"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMCAS44984.2019.8958272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMCAS44984.2019.8958272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了适用于将毫米波电子器件集成到基于缝隙波导的缝隙阵列中的各种低损耗微带到波导的过渡设计。通常,e平面探头型转换广泛用于毫米波频率范围,将来自TX/RX MMIC的RF信号耦合到波导部分。由于金属连接不完美而形成的微小缝隙会造成泄漏,因此避免了h平面分块。另一方面,传统的槽阵列是使用h平面分割块构建的。这使得将电子器件和其他无源元件(如双工滤波器)直接集成到高增益平面天线阵列中变得非常具有挑战性。为了克服上述问题,我们建议使用低损耗h平面转换将射频电子与基于多层间隙波导的缝隙阵列集成在一起。我们在e波段展示了一个完全封装的前端,展示了缝隙波导技术构建非常紧凑的全双工无线系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overview of High Frequency Electronics Integration Concepts for Gap waveguide based High Gain Slot Antenna Array
This paper presents an overview of different low-loss microstrip to waveguide transition designs suitable for integrating millimeter wave electronics to a gap waveguide based slot array. Typically, E-plane probe type of transitions are widely used at mmWave frequency range to couple RF signal from a TX/RX MMIC to the waveguide section. H-plane split-blocks are avoided due to leakage problem from tiny slits formed by imperfect metal connections. On the other hand, the traditional slot arrays are built using H-plane split blocks. This makes it very challenging to integrate electronics and other passive components such as diplexer filter directly to a high gain planar antenna array. To overcome this above mentioned problem, we propose to use low-loss H-plane transitions to integrate RF electronics with the multi-layer gap waveguide based slot array. We demonstrate a completely packaged frontend at E-band, showing the potential of the gap waveguide technology to build a very compact full-duplex wireless system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信