{"title":"通过聚集和生长,不断将建筑推广到建成区","authors":"Dongliang Peng, G. Touya","doi":"10.1145/3152178.3152188","DOIUrl":null,"url":null,"abstract":"To enable smooth zooming, we propose a method to continuously generalize buildings from a given start map to a smaller-scale goal map, where there are only built-up area polygons instead of individual building polygons. We name the buildings on the start map original buildings. For an intermediate scale, we aggregate the original buildings that will become too close by adding bridges. We grow (bridged) original buildings based on buffering, and simplify the grown buildings. We take into account the shapes of the buildings both at the previous map and goal map to make sure that the buildings are always growing. The running time of our method is in O (n3), where n is the number of edges of all the original buildings. The advantages of our method are as follows. First, the buildings grow continuously and, at the same time, are simplified. Second, right angles of buildings are preserved during growing: the merged buildings still look like buildings. Third, the distances between buildings are always larger than a specified threshold. We do a case study to show the performances of our method.","PeriodicalId":378940,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing\",\"authors\":\"Dongliang Peng, G. Touya\",\"doi\":\"10.1145/3152178.3152188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enable smooth zooming, we propose a method to continuously generalize buildings from a given start map to a smaller-scale goal map, where there are only built-up area polygons instead of individual building polygons. We name the buildings on the start map original buildings. For an intermediate scale, we aggregate the original buildings that will become too close by adding bridges. We grow (bridged) original buildings based on buffering, and simplify the grown buildings. We take into account the shapes of the buildings both at the previous map and goal map to make sure that the buildings are always growing. The running time of our method is in O (n3), where n is the number of edges of all the original buildings. The advantages of our method are as follows. First, the buildings grow continuously and, at the same time, are simplified. Second, right angles of buildings are preserved during growing: the merged buildings still look like buildings. Third, the distances between buildings are always larger than a specified threshold. We do a case study to show the performances of our method.\",\"PeriodicalId\":378940,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152178.3152188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152178.3152188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuously Generalizing Buildings to Built-up Areas by Aggregating and Growing
To enable smooth zooming, we propose a method to continuously generalize buildings from a given start map to a smaller-scale goal map, where there are only built-up area polygons instead of individual building polygons. We name the buildings on the start map original buildings. For an intermediate scale, we aggregate the original buildings that will become too close by adding bridges. We grow (bridged) original buildings based on buffering, and simplify the grown buildings. We take into account the shapes of the buildings both at the previous map and goal map to make sure that the buildings are always growing. The running time of our method is in O (n3), where n is the number of edges of all the original buildings. The advantages of our method are as follows. First, the buildings grow continuously and, at the same time, are simplified. Second, right angles of buildings are preserved during growing: the merged buildings still look like buildings. Third, the distances between buildings are always larger than a specified threshold. We do a case study to show the performances of our method.