{"title":"基于对称矩阵的彩色图像分位数滤波","authors":"M. Welk, A. Kleefeld, M. Breuß","doi":"10.1515/mathm-2016-0008","DOIUrl":null,"url":null,"abstract":"Abstract Quantile filters, or rank-order filters, are local image filters which assign quantiles of intensities of the input image within neighbourhoods as output image values. Combining a multivariate quantile definition developed in matrix-valued morphology with a recently introduced mapping between the RGB colour space and the space of symmetric 2 × 2 matrices, we state a class of colour image quantile filters, along with a class of morphological gradient filters derived from these.We consider variants of these filters based on three matrix norms – the nuclear, Frobenius, and spectral norm – and study their differences. We investigate the properties of the quantile and gradient filters and their links to dilation and erosion operators. Using amoeba structuring elements,we devise image-adaptive versions of our quantile and gradient filters. Experiments are presented to demonstrate the favourable properties of the filters, and compare them to existing approaches in colour morphology.","PeriodicalId":244328,"journal":{"name":"Mathematical Morphology - Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantile Filtering of Colour Images via Symmetric Matrices\",\"authors\":\"M. Welk, A. Kleefeld, M. Breuß\",\"doi\":\"10.1515/mathm-2016-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantile filters, or rank-order filters, are local image filters which assign quantiles of intensities of the input image within neighbourhoods as output image values. Combining a multivariate quantile definition developed in matrix-valued morphology with a recently introduced mapping between the RGB colour space and the space of symmetric 2 × 2 matrices, we state a class of colour image quantile filters, along with a class of morphological gradient filters derived from these.We consider variants of these filters based on three matrix norms – the nuclear, Frobenius, and spectral norm – and study their differences. We investigate the properties of the quantile and gradient filters and their links to dilation and erosion operators. Using amoeba structuring elements,we devise image-adaptive versions of our quantile and gradient filters. Experiments are presented to demonstrate the favourable properties of the filters, and compare them to existing approaches in colour morphology.\",\"PeriodicalId\":244328,\"journal\":{\"name\":\"Mathematical Morphology - Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Morphology - Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mathm-2016-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Morphology - Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mathm-2016-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantile Filtering of Colour Images via Symmetric Matrices
Abstract Quantile filters, or rank-order filters, are local image filters which assign quantiles of intensities of the input image within neighbourhoods as output image values. Combining a multivariate quantile definition developed in matrix-valued morphology with a recently introduced mapping between the RGB colour space and the space of symmetric 2 × 2 matrices, we state a class of colour image quantile filters, along with a class of morphological gradient filters derived from these.We consider variants of these filters based on three matrix norms – the nuclear, Frobenius, and spectral norm – and study their differences. We investigate the properties of the quantile and gradient filters and their links to dilation and erosion operators. Using amoeba structuring elements,we devise image-adaptive versions of our quantile and gradient filters. Experiments are presented to demonstrate the favourable properties of the filters, and compare them to existing approaches in colour morphology.