{"title":"使用运动和散焦线索的超分辨率","authors":"K. Suresh, A. Rajagopalan","doi":"10.1109/ICIP.2007.4379992","DOIUrl":null,"url":null,"abstract":"Reconstruction-based super-resolution algorithms use either sub-pixel shifts or relative blur among low-resolution observations as a cue to obtain a high-resolution image. In this paper, we propose a super-resolution algorithm that exploits the information available in the low-resolution observations due to both sub-pixel shifts and relative blur to yield a better quality image. Performance analysis is carried out based on the Cramer-Rao lower bound. Several experimental results on synthetic and real images are given for validation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Super-Resolution using Motion and Defocus Cues\",\"authors\":\"K. Suresh, A. Rajagopalan\",\"doi\":\"10.1109/ICIP.2007.4379992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction-based super-resolution algorithms use either sub-pixel shifts or relative blur among low-resolution observations as a cue to obtain a high-resolution image. In this paper, we propose a super-resolution algorithm that exploits the information available in the low-resolution observations due to both sub-pixel shifts and relative blur to yield a better quality image. Performance analysis is carried out based on the Cramer-Rao lower bound. Several experimental results on synthetic and real images are given for validation.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reconstruction-based super-resolution algorithms use either sub-pixel shifts or relative blur among low-resolution observations as a cue to obtain a high-resolution image. In this paper, we propose a super-resolution algorithm that exploits the information available in the low-resolution observations due to both sub-pixel shifts and relative blur to yield a better quality image. Performance analysis is carried out based on the Cramer-Rao lower bound. Several experimental results on synthetic and real images are given for validation.