{"title":"基于CFAR算法的改进更快R-CNN SAR舰船检测","authors":"Miao Kang, Xiangguang Leng, Zhao Lin, K. Ji","doi":"10.1109/RSIP.2017.7958815","DOIUrl":null,"url":null,"abstract":"SAR ship detection is essential to marine monitoring. Recently, with the development of the deep neural network and the spring of the SAR images, SAR ship detection based on deep neural network has been a trend. However, the multi-scale ships in SAR images cause the undesirable differences of features, which decrease the accuracy of ship detection based on deep learning methods. Aiming at this problem, this paper modifies the Faster R-CNN, a state-of-the-art object detection networks, by the traditional constant false alarm rate (CFAR). Taking the objects proposals generated by Faster R-CNN for the guard windows of CFAR algorithm, this method picks up the small-sized targets. By reevaluating the bounding boxes which have relative low classification scores in detection network, this method gain better performance of detection.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":"{\"title\":\"A modified faster R-CNN based on CFAR algorithm for SAR ship detection\",\"authors\":\"Miao Kang, Xiangguang Leng, Zhao Lin, K. Ji\",\"doi\":\"10.1109/RSIP.2017.7958815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SAR ship detection is essential to marine monitoring. Recently, with the development of the deep neural network and the spring of the SAR images, SAR ship detection based on deep neural network has been a trend. However, the multi-scale ships in SAR images cause the undesirable differences of features, which decrease the accuracy of ship detection based on deep learning methods. Aiming at this problem, this paper modifies the Faster R-CNN, a state-of-the-art object detection networks, by the traditional constant false alarm rate (CFAR). Taking the objects proposals generated by Faster R-CNN for the guard windows of CFAR algorithm, this method picks up the small-sized targets. By reevaluating the bounding boxes which have relative low classification scores in detection network, this method gain better performance of detection.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"168\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A modified faster R-CNN based on CFAR algorithm for SAR ship detection
SAR ship detection is essential to marine monitoring. Recently, with the development of the deep neural network and the spring of the SAR images, SAR ship detection based on deep neural network has been a trend. However, the multi-scale ships in SAR images cause the undesirable differences of features, which decrease the accuracy of ship detection based on deep learning methods. Aiming at this problem, this paper modifies the Faster R-CNN, a state-of-the-art object detection networks, by the traditional constant false alarm rate (CFAR). Taking the objects proposals generated by Faster R-CNN for the guard windows of CFAR algorithm, this method picks up the small-sized targets. By reevaluating the bounding boxes which have relative low classification scores in detection network, this method gain better performance of detection.