{"title":"面向特殊信息检索的贝叶斯扩展语言模型","authors":"H. Zaragoza, D. Hiemstra, Michael E. Tipping","doi":"10.1145/860435.860439","DOIUrl":null,"url":null,"abstract":"We propose a Bayesian extension to the ad-hoc Language Model. Many smoothed estimators used for the multinomial query model in ad-hoc Language Models (including Laplace and Bayes-smoothing) are approximations to the Bayesian predictive distribution. In this paper we derive the full predictive distribution in a form amenable to implementation by classical IR models, and then compare it to other currently used estimators. In our experiments the proposed model outperforms Bayes-smoothing, and its combination with linear interpolation smoothing outperforms all other estimators.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":"{\"title\":\"Bayesian extension to the language model for ad hoc information retrieval\",\"authors\":\"H. Zaragoza, D. Hiemstra, Michael E. Tipping\",\"doi\":\"10.1145/860435.860439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a Bayesian extension to the ad-hoc Language Model. Many smoothed estimators used for the multinomial query model in ad-hoc Language Models (including Laplace and Bayes-smoothing) are approximations to the Bayesian predictive distribution. In this paper we derive the full predictive distribution in a form amenable to implementation by classical IR models, and then compare it to other currently used estimators. In our experiments the proposed model outperforms Bayes-smoothing, and its combination with linear interpolation smoothing outperforms all other estimators.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"80\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian extension to the language model for ad hoc information retrieval
We propose a Bayesian extension to the ad-hoc Language Model. Many smoothed estimators used for the multinomial query model in ad-hoc Language Models (including Laplace and Bayes-smoothing) are approximations to the Bayesian predictive distribution. In this paper we derive the full predictive distribution in a form amenable to implementation by classical IR models, and then compare it to other currently used estimators. In our experiments the proposed model outperforms Bayes-smoothing, and its combination with linear interpolation smoothing outperforms all other estimators.