Valérian Guivarch, J. F. D. Paz, Gabriel Villarrubia, J. Bajo, A. Péninou, Valérie Camps
{"title":"混合系统分析用户行为","authors":"Valérian Guivarch, J. F. D. Paz, Gabriel Villarrubia, J. Bajo, A. Péninou, Valérie Camps","doi":"10.1109/SSCI.2016.7849857","DOIUrl":null,"url":null,"abstract":"The evolution of ambient intelligence systems has allowed for the development of adaptable systems. These systems trace user's habits in an automatic way and act accordingly, resulting in a context aware system. The goal is to make these systems adaptable to the user's environment, without the need for their direct interaction. This paper proposes a system that can learn from users' behavior. In order for the system to perform effectively, an adaptable multi agent system is proposed and the results are compared with the use of several classifiers.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid system to analyze user's behaviour\",\"authors\":\"Valérian Guivarch, J. F. D. Paz, Gabriel Villarrubia, J. Bajo, A. Péninou, Valérie Camps\",\"doi\":\"10.1109/SSCI.2016.7849857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of ambient intelligence systems has allowed for the development of adaptable systems. These systems trace user's habits in an automatic way and act accordingly, resulting in a context aware system. The goal is to make these systems adaptable to the user's environment, without the need for their direct interaction. This paper proposes a system that can learn from users' behavior. In order for the system to perform effectively, an adaptable multi agent system is proposed and the results are compared with the use of several classifiers.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7849857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The evolution of ambient intelligence systems has allowed for the development of adaptable systems. These systems trace user's habits in an automatic way and act accordingly, resulting in a context aware system. The goal is to make these systems adaptable to the user's environment, without the need for their direct interaction. This paper proposes a system that can learn from users' behavior. In order for the system to perform effectively, an adaptable multi agent system is proposed and the results are compared with the use of several classifiers.