无损数据压缩的自适应技术

G. Deng, H. Ye, L. Cahill
{"title":"无损数据压缩的自适应技术","authors":"G. Deng, H. Ye, L. Cahill","doi":"10.1109/ANZIIS.2001.974102","DOIUrl":null,"url":null,"abstract":"Data compression techniques have many applications in medical signal and image processing. In medical imaging, lossless image compression is required. According to information theory, a fundamental problem in data compression is to estimate the probability distribution function (pdf) of the signal given the data seen so far. The estimation should be as close as possible to the true pdf. For non-stationary signals, an adaptive estimation technique must be used. In this paper we address this problem by reviewing the current practices in compressing digital image and audio data. We show that the popular prediction plus entropy coding approach is only a rough approximation to that suggested by information theory. We then discuss a Bayesian approach to improve the prediction performance. We also propose another Bayesian approach for adaptive pdf estimation.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive techniques for lossless data compression\",\"authors\":\"G. Deng, H. Ye, L. Cahill\",\"doi\":\"10.1109/ANZIIS.2001.974102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data compression techniques have many applications in medical signal and image processing. In medical imaging, lossless image compression is required. According to information theory, a fundamental problem in data compression is to estimate the probability distribution function (pdf) of the signal given the data seen so far. The estimation should be as close as possible to the true pdf. For non-stationary signals, an adaptive estimation technique must be used. In this paper we address this problem by reviewing the current practices in compressing digital image and audio data. We show that the popular prediction plus entropy coding approach is only a rough approximation to that suggested by information theory. We then discuss a Bayesian approach to improve the prediction performance. We also propose another Bayesian approach for adaptive pdf estimation.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据压缩技术在医疗信号和图像处理中有着广泛的应用。在医学成像中,需要对图像进行无损压缩。根据信息论,数据压缩的一个基本问题是估计已知数据信号的概率分布函数(pdf)。估算值应尽可能接近真实的pdf。对于非平稳信号,必须采用自适应估计技术。在本文中,我们通过回顾当前压缩数字图像和音频数据的实践来解决这个问题。我们证明了流行的预测加熵编码方法只是信息理论建议的粗略近似。然后我们讨论了贝叶斯方法来提高预测性能。我们还提出了另一种贝叶斯方法用于自适应pdf估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive techniques for lossless data compression
Data compression techniques have many applications in medical signal and image processing. In medical imaging, lossless image compression is required. According to information theory, a fundamental problem in data compression is to estimate the probability distribution function (pdf) of the signal given the data seen so far. The estimation should be as close as possible to the true pdf. For non-stationary signals, an adaptive estimation technique must be used. In this paper we address this problem by reviewing the current practices in compressing digital image and audio data. We show that the popular prediction plus entropy coding approach is only a rough approximation to that suggested by information theory. We then discuss a Bayesian approach to improve the prediction performance. We also propose another Bayesian approach for adaptive pdf estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信