一种新的互联网流量建模概率分布及其参数估计

E. Chlebus, Gautam Divgi
{"title":"一种新的互联网流量建模概率分布及其参数估计","authors":"E. Chlebus, Gautam Divgi","doi":"10.1109/GLOCOM.2007.886","DOIUrl":null,"url":null,"abstract":"A new probability distribution following from Lavalette's law has been proposed for modeling wireless Internet access session statistics collected in a public nationwide Wi-Fi network. We have derived maximum likelihood estimators for this distribution and found them for three data sets of session duration and traffic volume measurements. Goodness of all fits is nearly perfect. The introduced model outperforms the Pareto, truncated Pareto and modified truncated Pareto distributions. Its flexibility makes it a good candidate for describing both long- tailed and non-long-tailed data.","PeriodicalId":370937,"journal":{"name":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A Novel Probability Distribution for Modeling Internet Traffic and its Parameter Estimation\",\"authors\":\"E. Chlebus, Gautam Divgi\",\"doi\":\"10.1109/GLOCOM.2007.886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new probability distribution following from Lavalette's law has been proposed for modeling wireless Internet access session statistics collected in a public nationwide Wi-Fi network. We have derived maximum likelihood estimators for this distribution and found them for three data sets of session duration and traffic volume measurements. Goodness of all fits is nearly perfect. The introduced model outperforms the Pareto, truncated Pareto and modified truncated Pareto distributions. Its flexibility makes it a good candidate for describing both long- tailed and non-long-tailed data.\",\"PeriodicalId\":370937,\"journal\":{\"name\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2007.886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2007.886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

根据Lavalette定律,提出了一种新的概率分布,用于模拟在全国公共Wi-Fi网络中收集的无线互联网访问会话统计数据。我们为这个分布导出了最大似然估计,并为会话持续时间和流量测量的三个数据集找到了它们。十全十美是近乎完美的。所引入的模型优于帕累托分布、截断帕累托分布和改进的截断帕累托分布。它的灵活性使其成为描述长尾和非长尾数据的良好候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Probability Distribution for Modeling Internet Traffic and its Parameter Estimation
A new probability distribution following from Lavalette's law has been proposed for modeling wireless Internet access session statistics collected in a public nationwide Wi-Fi network. We have derived maximum likelihood estimators for this distribution and found them for three data sets of session duration and traffic volume measurements. Goodness of all fits is nearly perfect. The introduced model outperforms the Pareto, truncated Pareto and modified truncated Pareto distributions. Its flexibility makes it a good candidate for describing both long- tailed and non-long-tailed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信