基于检测残差关联轨迹的行人跟踪

V.K. Singh, Bo Wu, R. Nevatia
{"title":"基于检测残差关联轨迹的行人跟踪","authors":"V.K. Singh, Bo Wu, R. Nevatia","doi":"10.1109/WMVC.2008.4544058","DOIUrl":null,"url":null,"abstract":"Due to increased interest in visual surveillance, various multiple object tracking methods have been recently proposed and applied to pedestrian tracking. However in presence of intensive inter-object occlusion and sensor gaps, most of these methods result in tracking failures. We present a two-stage multi-object tracking approach to robustly track pedestrians in such complex scenarios. We first generate high confidence partial track segments (tracklets) using a robust pedestrian detector and then associate the tracklets in a global optimization framework. Unlike the existing two-stage tracking methods, our method uses the unasso- ciated low confidence detections (residuals) between the tracklets, which improves the tracking performance. We evaluate our method on the CAVIAR dataset and show that our method performs better than state-of-the-art methods.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Pedestrian Tracking by Associating Tracklets using Detection Residuals\",\"authors\":\"V.K. Singh, Bo Wu, R. Nevatia\",\"doi\":\"10.1109/WMVC.2008.4544058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to increased interest in visual surveillance, various multiple object tracking methods have been recently proposed and applied to pedestrian tracking. However in presence of intensive inter-object occlusion and sensor gaps, most of these methods result in tracking failures. We present a two-stage multi-object tracking approach to robustly track pedestrians in such complex scenarios. We first generate high confidence partial track segments (tracklets) using a robust pedestrian detector and then associate the tracklets in a global optimization framework. Unlike the existing two-stage tracking methods, our method uses the unasso- ciated low confidence detections (residuals) between the tracklets, which improves the tracking performance. We evaluate our method on the CAVIAR dataset and show that our method performs better than state-of-the-art methods.\",\"PeriodicalId\":150666,\"journal\":{\"name\":\"2008 IEEE Workshop on Motion and video Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Workshop on Motion and video Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WMVC.2008.4544058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

摘要

由于人们对视觉监控的兴趣日益浓厚,最近提出了各种多目标跟踪方法并应用于行人跟踪。然而,由于存在严重的目标间遮挡和传感器间隙,这些方法大多导致跟踪失败。我们提出了一种两阶段多目标跟踪方法来鲁棒地跟踪这些复杂场景中的行人。我们首先使用鲁棒行人检测器生成高置信度的部分轨迹段(tracklet),然后在全局优化框架中关联这些轨迹段。与现有的两阶段跟踪方法不同,我们的方法在跟踪小块之间使用了不相关的低置信度检测(残差),提高了跟踪性能。我们在CAVIAR数据集上评估了我们的方法,并表明我们的方法比最先进的方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian Tracking by Associating Tracklets using Detection Residuals
Due to increased interest in visual surveillance, various multiple object tracking methods have been recently proposed and applied to pedestrian tracking. However in presence of intensive inter-object occlusion and sensor gaps, most of these methods result in tracking failures. We present a two-stage multi-object tracking approach to robustly track pedestrians in such complex scenarios. We first generate high confidence partial track segments (tracklets) using a robust pedestrian detector and then associate the tracklets in a global optimization framework. Unlike the existing two-stage tracking methods, our method uses the unasso- ciated low confidence detections (residuals) between the tracklets, which improves the tracking performance. We evaluate our method on the CAVIAR dataset and show that our method performs better than state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信