并行MATLAB的应用

B. Guilfoos, J. Gardiner, J. C. Chaves, J. Nehrbass, S. Ahalt, A. Krishnamurthy, J. Unpingco, A. Chalker, L. Humphrey, S. Samsi
{"title":"并行MATLAB的应用","authors":"B. Guilfoos, J. Gardiner, J. C. Chaves, J. Nehrbass, S. Ahalt, A. Krishnamurthy, J. Unpingco, A. Chalker, L. Humphrey, S. Samsi","doi":"10.1109/HPCMP-UGC.2006.4","DOIUrl":null,"url":null,"abstract":"The parallel MATLAB implementations used for this project are MatlabMPI and pMATLAB, both developed by Dr. Jeremy Kepner at MIT-LL. MatlabMPI is based on the message passing interface standard, in which processes coordinate their work and communicate by passing messages among themselves. The pMATLAB library supports parallel array programming in MATLAB. The user program defines arrays that are distributed among the available processes. Although communication between processes is actually done through message passing, the details are hidden from the user. The objective of this PET project was to develop parallel MATLAB code for selected algorithms that are of interest to the Department of Defense (DoD) signal/image processing (SIP) community and to run the code on the HPCMP systems. The algorithms selected for parallel MATLAB implementation were a support vector machine (SVM) classifier, metropolis-Hastings Markov chain Monte Carlo (MCMC) simulation, and content-based image compression (CBIC)","PeriodicalId":173959,"journal":{"name":"2006 HPCMP Users Group Conference (HPCMP-UGC'06)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Applications in Parallel MATLAB\",\"authors\":\"B. Guilfoos, J. Gardiner, J. C. Chaves, J. Nehrbass, S. Ahalt, A. Krishnamurthy, J. Unpingco, A. Chalker, L. Humphrey, S. Samsi\",\"doi\":\"10.1109/HPCMP-UGC.2006.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parallel MATLAB implementations used for this project are MatlabMPI and pMATLAB, both developed by Dr. Jeremy Kepner at MIT-LL. MatlabMPI is based on the message passing interface standard, in which processes coordinate their work and communicate by passing messages among themselves. The pMATLAB library supports parallel array programming in MATLAB. The user program defines arrays that are distributed among the available processes. Although communication between processes is actually done through message passing, the details are hidden from the user. The objective of this PET project was to develop parallel MATLAB code for selected algorithms that are of interest to the Department of Defense (DoD) signal/image processing (SIP) community and to run the code on the HPCMP systems. The algorithms selected for parallel MATLAB implementation were a support vector machine (SVM) classifier, metropolis-Hastings Markov chain Monte Carlo (MCMC) simulation, and content-based image compression (CBIC)\",\"PeriodicalId\":173959,\"journal\":{\"name\":\"2006 HPCMP Users Group Conference (HPCMP-UGC'06)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 HPCMP Users Group Conference (HPCMP-UGC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCMP-UGC.2006.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 HPCMP Users Group Conference (HPCMP-UGC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCMP-UGC.2006.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这个项目使用的并行MATLAB实现是MatlabMPI和pMATLAB,都是由MIT-LL的Jeremy Kepner博士开发的。MatlabMPI基于消息传递接口标准,在该标准中,进程之间通过传递消息来协调它们的工作和通信。MATLAB库支持MATLAB中的并行数组编程。用户程序定义分布在可用进程之间的数组。尽管进程之间的通信实际上是通过消息传递完成的,但细节对用户是隐藏的。这个PET项目的目标是为国防部(DoD)信号/图像处理(SIP)社区感兴趣的选定算法开发并行MATLAB代码,并在HPCMP系统上运行代码。选择支持向量机(SVM)分类器、metropolis-Hastings马尔可夫链蒙特卡罗(MCMC)仿真和基于内容的图像压缩(CBIC)算法作为并行MATLAB实现算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications in Parallel MATLAB
The parallel MATLAB implementations used for this project are MatlabMPI and pMATLAB, both developed by Dr. Jeremy Kepner at MIT-LL. MatlabMPI is based on the message passing interface standard, in which processes coordinate their work and communicate by passing messages among themselves. The pMATLAB library supports parallel array programming in MATLAB. The user program defines arrays that are distributed among the available processes. Although communication between processes is actually done through message passing, the details are hidden from the user. The objective of this PET project was to develop parallel MATLAB code for selected algorithms that are of interest to the Department of Defense (DoD) signal/image processing (SIP) community and to run the code on the HPCMP systems. The algorithms selected for parallel MATLAB implementation were a support vector machine (SVM) classifier, metropolis-Hastings Markov chain Monte Carlo (MCMC) simulation, and content-based image compression (CBIC)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信