一个没有非平凡解的方程组

H. Gupta
{"title":"一个没有非平凡解的方程组","authors":"H. Gupta","doi":"10.6028/JRES.071B.024","DOIUrl":null,"url":null,"abstract":"L The object of this note is to prove the THEOREM: The system of equations af + a~ + . + a~_1 = br + b~ + . . . + b~_l' r=2,3, .. . , n ; (1) has no nontrivial solutions in positive integers. In what follows, we write Ar for a~+ a;+ \"'\" 1; Br for bi+ b;+ + b~_ I' r\"'\" 1; and all small letters denote integers\"'\" 0 unless stated otherwise. 2. PROOF OF THE THEOREM: Let at, a2, ... , a,,_1 From (4) we have AI 1 0 0 0 A2 AI 2 0 0 A3 A2 AI 3 0 r!'\\r =","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A system of equations having no nontrivial solutions\",\"authors\":\"H. Gupta\",\"doi\":\"10.6028/JRES.071B.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"L The object of this note is to prove the THEOREM: The system of equations af + a~ + . + a~_1 = br + b~ + . . . + b~_l' r=2,3, .. . , n ; (1) has no nontrivial solutions in positive integers. In what follows, we write Ar for a~+ a;+ \\\"'\\\" 1; Br for bi+ b;+ + b~_ I' r\\\"'\\\" 1; and all small letters denote integers\\\"'\\\" 0 unless stated otherwise. 2. PROOF OF THE THEOREM: Let at, a2, ... , a,,_1 From (4) we have AI 1 0 0 0 A2 AI 2 0 0 A3 A2 AI 3 0 r!'\\\\r =\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.071B.024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.071B.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本笔记的目的是证明一个定理:方程组af + a~ +。+ a~_1 = br + b~ +…+ b~_l' r=2,3,…, n;(1)在正整数中没有非平凡解。在下面,我们用Ar表示a~+ a;+“'”1;Br for bi+ b;+ + b~_ I' r ' ' 1;除非另有说明,所有小写字母表示整数“'”0。2. 定理的证明:设at, a2,…, a,, 1从(4)得到ai1 0 0 A2 ai2 0 0 A3 A2 ai3 0 r!' \ r =
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A system of equations having no nontrivial solutions
L The object of this note is to prove the THEOREM: The system of equations af + a~ + . + a~_1 = br + b~ + . . . + b~_l' r=2,3, .. . , n ; (1) has no nontrivial solutions in positive integers. In what follows, we write Ar for a~+ a;+ "'" 1; Br for bi+ b;+ + b~_ I' r"'" 1; and all small letters denote integers"'" 0 unless stated otherwise. 2. PROOF OF THE THEOREM: Let at, a2, ... , a,,_1 From (4) we have AI 1 0 0 0 A2 AI 2 0 0 A3 A2 AI 3 0 r!'\r =
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信