Stefan Romberg, Lluis Garcia Pueyo, R. Lienhart, R. V. Zwol
{"title":"可扩展的标志识别在现实世界的图像","authors":"Stefan Romberg, Lluis Garcia Pueyo, R. Lienhart, R. V. Zwol","doi":"10.1145/1991996.1992021","DOIUrl":null,"url":null,"abstract":"In this paper we propose a highly effective and scalable framework for recognizing logos in images. At the core of our approach lays a method for encoding and indexing the relative spatial layout of local features detected in the logo images. Based on the analysis of the local features and the composition of basic spatial structures, such as edges and triangles, we can derive a quantized representation of the regions in the logos and minimize the false positive detections. Furthermore, we propose a cascaded index for scalable multi-class recognition of logos. For the evaluation of our system, we have constructed and released a logo recognition benchmark which consists of manually labeled logo images, complemented with non-logo images, all posted on Flickr. The dataset consists of a training, validation, and test set with 32 logo-classes. We thoroughly evaluate our system with this benchmark and show that our approach effectively recognizes different logo classes with high precision.","PeriodicalId":390933,"journal":{"name":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"245","resultStr":"{\"title\":\"Scalable logo recognition in real-world images\",\"authors\":\"Stefan Romberg, Lluis Garcia Pueyo, R. Lienhart, R. V. Zwol\",\"doi\":\"10.1145/1991996.1992021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a highly effective and scalable framework for recognizing logos in images. At the core of our approach lays a method for encoding and indexing the relative spatial layout of local features detected in the logo images. Based on the analysis of the local features and the composition of basic spatial structures, such as edges and triangles, we can derive a quantized representation of the regions in the logos and minimize the false positive detections. Furthermore, we propose a cascaded index for scalable multi-class recognition of logos. For the evaluation of our system, we have constructed and released a logo recognition benchmark which consists of manually labeled logo images, complemented with non-logo images, all posted on Flickr. The dataset consists of a training, validation, and test set with 32 logo-classes. We thoroughly evaluate our system with this benchmark and show that our approach effectively recognizes different logo classes with high precision.\",\"PeriodicalId\":390933,\"journal\":{\"name\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"245\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st ACM International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1991996.1992021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1991996.1992021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we propose a highly effective and scalable framework for recognizing logos in images. At the core of our approach lays a method for encoding and indexing the relative spatial layout of local features detected in the logo images. Based on the analysis of the local features and the composition of basic spatial structures, such as edges and triangles, we can derive a quantized representation of the regions in the logos and minimize the false positive detections. Furthermore, we propose a cascaded index for scalable multi-class recognition of logos. For the evaluation of our system, we have constructed and released a logo recognition benchmark which consists of manually labeled logo images, complemented with non-logo images, all posted on Flickr. The dataset consists of a training, validation, and test set with 32 logo-classes. We thoroughly evaluate our system with this benchmark and show that our approach effectively recognizes different logo classes with high precision.