有限步随机行走产生的随机光场统计

Bozhen Zhang, X. Liu, Jun Dai, Ying Wang, Wen Wang
{"title":"有限步随机行走产生的随机光场统计","authors":"Bozhen Zhang, X. Liu, Jun Dai, Ying Wang, Wen Wang","doi":"10.1117/12.2615505","DOIUrl":null,"url":null,"abstract":"Classical stochastic electromagnetic field assumes that the number of steps is infinite, but in practice, the number of steps for random walk is limited, even though the number of steps is large. Therefore, the statistical properties of finite-step random phasor sums are different from those of classical ones. As an example, the negative exponential probability density function of classical intensity speckles is not suitable for speckles with limited steps. In some applications, including but not limited to synthetic-aperture radar (SAR) imagery, wireless communication and wavelet analysis, when the probability density function of the classical speckle is used to calculate, the acquired result is often biased, and can’t provide appropriate estimation with reasonable accuracy. In this paper, we make the statistical analysis of the Stokes parameters of the random polarization phasor sums with a limited number of steps. The statical properties for the stochastic optical fields generated with a limited number of steps are presented with different applications in optical engineering","PeriodicalId":250235,"journal":{"name":"International Conference on Correlation Optics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistics of random optical field generated by a random walk with a finite number of steps\",\"authors\":\"Bozhen Zhang, X. Liu, Jun Dai, Ying Wang, Wen Wang\",\"doi\":\"10.1117/12.2615505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical stochastic electromagnetic field assumes that the number of steps is infinite, but in practice, the number of steps for random walk is limited, even though the number of steps is large. Therefore, the statistical properties of finite-step random phasor sums are different from those of classical ones. As an example, the negative exponential probability density function of classical intensity speckles is not suitable for speckles with limited steps. In some applications, including but not limited to synthetic-aperture radar (SAR) imagery, wireless communication and wavelet analysis, when the probability density function of the classical speckle is used to calculate, the acquired result is often biased, and can’t provide appropriate estimation with reasonable accuracy. In this paper, we make the statistical analysis of the Stokes parameters of the random polarization phasor sums with a limited number of steps. The statical properties for the stochastic optical fields generated with a limited number of steps are presented with different applications in optical engineering\",\"PeriodicalId\":250235,\"journal\":{\"name\":\"International Conference on Correlation Optics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Correlation Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2615505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Correlation Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2615505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经典的随机电磁场假设步数是无限的,但在实践中,随机行走的步数是有限的,即使步数很大。因此,有限步随机相和的统计性质不同于经典相和的统计性质。例如,经典强度散斑的负指数概率密度函数不适用于步长有限的散斑。在一些应用中,包括但不限于合成孔径雷达(SAR)成像、无线通信和小波分析,当使用经典散斑的概率密度函数进行计算时,所得结果往往存在偏差,不能提供合理精度的适当估计。本文对有限步长随机极化相和的Stokes参数进行了统计分析。给出了有限步长随机光场的静态特性及其在光学工程中的不同应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics of random optical field generated by a random walk with a finite number of steps
Classical stochastic electromagnetic field assumes that the number of steps is infinite, but in practice, the number of steps for random walk is limited, even though the number of steps is large. Therefore, the statistical properties of finite-step random phasor sums are different from those of classical ones. As an example, the negative exponential probability density function of classical intensity speckles is not suitable for speckles with limited steps. In some applications, including but not limited to synthetic-aperture radar (SAR) imagery, wireless communication and wavelet analysis, when the probability density function of the classical speckle is used to calculate, the acquired result is often biased, and can’t provide appropriate estimation with reasonable accuracy. In this paper, we make the statistical analysis of the Stokes parameters of the random polarization phasor sums with a limited number of steps. The statical properties for the stochastic optical fields generated with a limited number of steps are presented with different applications in optical engineering
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信