在云计算中保持数据的私密性

Yuriy Brun, N. Medvidović
{"title":"在云计算中保持数据的私密性","authors":"Yuriy Brun, N. Medvidović","doi":"10.1109/CLOUD.2012.126","DOIUrl":null,"url":null,"abstract":"The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Keeping Data Private while Computing in the Cloud\",\"authors\":\"Yuriy Brun, N. Medvidović\",\"doi\":\"10.1109/CLOUD.2012.126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.\",\"PeriodicalId\":214084,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2012.126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

云计算提供了前所未有的计算能力。然而,确保计算的私密性仍然是一个重大挑战。在本文中,我们解决了将计算分布到云上的问题,这种方式甚至可以保护来自云节点本身的计算数据的隐私。这种方法被称为sTile,它将计算分成小的子计算,并以一种难以重构数据的方式分布它们。我们从理论上和经验上对sTile进行了评估:首先,我们正式证明了sTile系统保护隐私。其次,我们在三个不同的网络上部署了一个原型实现,包括全球分布式的PlanetLab测试平台,以表明sTile对网络延迟具有鲁棒性,并且足够高效,显著优于现有的隐私保护方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Keeping Data Private while Computing in the Cloud
The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信