一种具有多项式编解码复杂度的AWGN信道容量实现编码方案

Shashank Vatedka, N. Kashyap
{"title":"一种具有多项式编解码复杂度的AWGN信道容量实现编码方案","authors":"Shashank Vatedka, N. Kashyap","doi":"10.1109/NCC.2016.7561091","DOIUrl":null,"url":null,"abstract":"A fundamental problem in coding theory is the design of an efficient coding scheme that achieves the capacity of the additive white Gaussian (AWGN) channel. In this article, we study a simple capacity-achieving nested lattice coding scheme whose encoding and decoding complexities are polynomial in the blocklength. Specifically, we show that by concatenating an inner nested lattice code with an outer Reed-Solomon code over an appropriate finite field, we can achieve the capacity of the AWGN channel. The main feature of this technique is that the encoding and decoding complexities grow as O(N2), while the probability of error decays exponentially in N, where N denotes the blocklength. We also show that this gives us a recipe to extend a high-complexity nested lattice code for a Gaussian channel to low-complexity concatenated code without any loss in the asymptotic rate. As examples, we describe polynomial-time coding schemes for the wiretap channel, and the compute-and-forward scheme for computing integer linear combinations of messages.","PeriodicalId":279637,"journal":{"name":"2016 Twenty Second National Conference on Communication (NCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A capacity-achieving coding scheme for the AWGN channel with polynomial encoding and decoding complexity\",\"authors\":\"Shashank Vatedka, N. Kashyap\",\"doi\":\"10.1109/NCC.2016.7561091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental problem in coding theory is the design of an efficient coding scheme that achieves the capacity of the additive white Gaussian (AWGN) channel. In this article, we study a simple capacity-achieving nested lattice coding scheme whose encoding and decoding complexities are polynomial in the blocklength. Specifically, we show that by concatenating an inner nested lattice code with an outer Reed-Solomon code over an appropriate finite field, we can achieve the capacity of the AWGN channel. The main feature of this technique is that the encoding and decoding complexities grow as O(N2), while the probability of error decays exponentially in N, where N denotes the blocklength. We also show that this gives us a recipe to extend a high-complexity nested lattice code for a Gaussian channel to low-complexity concatenated code without any loss in the asymptotic rate. As examples, we describe polynomial-time coding schemes for the wiretap channel, and the compute-and-forward scheme for computing integer linear combinations of messages.\",\"PeriodicalId\":279637,\"journal\":{\"name\":\"2016 Twenty Second National Conference on Communication (NCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Twenty Second National Conference on Communication (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2016.7561091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Twenty Second National Conference on Communication (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2016.7561091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

编码理论中的一个基本问题是如何设计一种有效的编码方案来实现加性高斯白信道的容量。在本文中,我们研究了一种简单的容量实现嵌套点阵编码方案,其编码和解码复杂度是块长度的多项式。具体来说,我们证明了通过在适当的有限域上连接内部嵌套的晶格码和外部Reed-Solomon码,我们可以实现AWGN信道的容量。该技术的主要特点是编码和解码复杂度随O(N2)增长,而错误概率随N呈指数衰减,其中N表示块长度。我们还表明,这为我们提供了一种方法,可以将高斯信道的高复杂性嵌套晶格码扩展到低复杂性的连接码,而不会在渐近速率上有任何损失。作为示例,我们描述了用于窃听信道的多项式时间编码方案,以及用于计算消息的整数线性组合的计算和转发方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A capacity-achieving coding scheme for the AWGN channel with polynomial encoding and decoding complexity
A fundamental problem in coding theory is the design of an efficient coding scheme that achieves the capacity of the additive white Gaussian (AWGN) channel. In this article, we study a simple capacity-achieving nested lattice coding scheme whose encoding and decoding complexities are polynomial in the blocklength. Specifically, we show that by concatenating an inner nested lattice code with an outer Reed-Solomon code over an appropriate finite field, we can achieve the capacity of the AWGN channel. The main feature of this technique is that the encoding and decoding complexities grow as O(N2), while the probability of error decays exponentially in N, where N denotes the blocklength. We also show that this gives us a recipe to extend a high-complexity nested lattice code for a Gaussian channel to low-complexity concatenated code without any loss in the asymptotic rate. As examples, we describe polynomial-time coding schemes for the wiretap channel, and the compute-and-forward scheme for computing integer linear combinations of messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信