克里米亚山地高原植树造林后土壤中生物可利用性重金属化合物含量的变化

I. Kostenko, A. Nikiforov
{"title":"克里米亚山地高原植树造林后土壤中生物可利用性重金属化合物含量的变化","authors":"I. Kostenko, A. Nikiforov","doi":"10.31509/2658-607x-20214112","DOIUrl":null,"url":null,"abstract":"About 3 thousand hectares of forest stands were created on the surface of the Crimean mountain plateaus in the middle of the 20th century as a result of afforestation. Studies on the influence of these stands on the properties of mountain meadow soils (Phaeozems) showed that under the forest vegetation, the consolidation of structural aggregates, a decrease in the humus content, and an increase in acidity compared to the soils under the meadow vegetation, which could also affect other soil properties, including the mobility of some metals, were observed. The work objective of this research is to conduct a comparative analysis of the content of Pb, Mn, Cu, and Zn compounds available for biota (1 M ammonium acetate) in the soil under mountain meadows, natural beech forest, and artificial forest stands. Following the obtained results, the available Pb, Mn, and Cu compounds accumulated in the afforested mountain meadow soils relative to the adjacent mountain meadows areas. Thus, the average Pb content in the soil layer of 0–10 cm under the mountain pine stands in comparison with the soil under meadow vegetation was 1.6 times higher, Mn – 1.2 times, Cu – 1.2 times. The Pb content was 2.5 times higher, Mn – 1.5 times higher, and Cu – 1.2 times higher under the silver birch stands. The Pb content was 2.2 times higher, Mn – 2.4 times higher, and Cu – 1.5 times higher under Siberian larch stands. The Pb content was 1.9 times higher, Mn – 1.1 times higher, Cu – 1.3 times higher under the sycamore maple stands, compared to the meadow. Differences between afforested and meadow soils in the content of these elements in most cases were significant, except for the Zn content, signs of accumulation of which under artificial stands were not revealed. The Pb, Mn, and Cu content in the brown forest lessive soil (Luvisols) under the oriental beech corresponded to their concentration under the larch, and the Zn content was significantly higher compared to the soil under all species. The main reason for the increase in the mobility of some elements under tree stands is their transition from immobile forms under the influence of increased acidity of afforested soils. Wood litter due to the low content of trace elements in its composition cannot be a source of their accumulation in the topsoil.","PeriodicalId":237008,"journal":{"name":"Forest science issues","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHANGES IN THE CONTENT OF BIOAVAILABLE HEAVY METAL COMPOUNDS IN THE SOILS OF THE CRIMEAN MOUNTAIN PLATEAUS AFTER AFFORESTATION\",\"authors\":\"I. Kostenko, A. Nikiforov\",\"doi\":\"10.31509/2658-607x-20214112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"About 3 thousand hectares of forest stands were created on the surface of the Crimean mountain plateaus in the middle of the 20th century as a result of afforestation. Studies on the influence of these stands on the properties of mountain meadow soils (Phaeozems) showed that under the forest vegetation, the consolidation of structural aggregates, a decrease in the humus content, and an increase in acidity compared to the soils under the meadow vegetation, which could also affect other soil properties, including the mobility of some metals, were observed. The work objective of this research is to conduct a comparative analysis of the content of Pb, Mn, Cu, and Zn compounds available for biota (1 M ammonium acetate) in the soil under mountain meadows, natural beech forest, and artificial forest stands. Following the obtained results, the available Pb, Mn, and Cu compounds accumulated in the afforested mountain meadow soils relative to the adjacent mountain meadows areas. Thus, the average Pb content in the soil layer of 0–10 cm under the mountain pine stands in comparison with the soil under meadow vegetation was 1.6 times higher, Mn – 1.2 times, Cu – 1.2 times. The Pb content was 2.5 times higher, Mn – 1.5 times higher, and Cu – 1.2 times higher under the silver birch stands. The Pb content was 2.2 times higher, Mn – 2.4 times higher, and Cu – 1.5 times higher under Siberian larch stands. The Pb content was 1.9 times higher, Mn – 1.1 times higher, Cu – 1.3 times higher under the sycamore maple stands, compared to the meadow. Differences between afforested and meadow soils in the content of these elements in most cases were significant, except for the Zn content, signs of accumulation of which under artificial stands were not revealed. The Pb, Mn, and Cu content in the brown forest lessive soil (Luvisols) under the oriental beech corresponded to their concentration under the larch, and the Zn content was significantly higher compared to the soil under all species. The main reason for the increase in the mobility of some elements under tree stands is their transition from immobile forms under the influence of increased acidity of afforested soils. Wood litter due to the low content of trace elements in its composition cannot be a source of their accumulation in the topsoil.\",\"PeriodicalId\":237008,\"journal\":{\"name\":\"Forest science issues\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest science issues\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31509/2658-607x-20214112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest science issues","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31509/2658-607x-20214112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

20世纪中叶,由于植树造林,在克里米亚山区高原上创造了大约3000公顷的森林。关于这些林分对山地草甸土壤(Phaeozems)性质影响的研究表明,与草甸植被下的土壤相比,森林植被下的结构团聚体固结,腐殖质含量减少,酸度增加,这也可能影响其他土壤性质,包括某些金属的流动性。本研究的工作目的是对山地草甸、天然山毛榉林和人工林分土壤中生物区系可利用的Pb、Mn、Cu和Zn化合物(1 M乙酸铵)含量进行比较分析。结果表明,相对于邻近的山地草甸区,造林后的山地草甸土壤中有效Pb、Mn和Cu化合物的积累。结果表明,山松林下0 ~ 10 cm土层Pb平均含量比草甸植被下高1.6倍,Mn - 1.2倍,Cu - 1.2倍。白桦林下Pb、Mn、Cu含量分别高出2.5倍、1.5倍和1.2倍。西伯利亚落叶松林下土壤Pb、Mn - 2.4、Cu - 1.5的含量分别比林下高2.2倍、2.4倍和1.5倍。与草甸相比,梧桐枫林下土壤Pb含量高1.9倍,Mn - 1.1倍,Cu - 1.3倍。除Zn外,其余元素在人工林分下均未表现出积累的迹象。山毛榉林下褐林土壤Pb、Mn、Cu含量与落叶松林下相当,Zn含量显著高于其他树种。林下某些元素流动性增加的主要原因是它们在造林土壤酸度增加的影响下由不流动形式转变而来。枯枝凋落物由于其组成中微量元素含量低,不能成为其在表层土壤中积累的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHANGES IN THE CONTENT OF BIOAVAILABLE HEAVY METAL COMPOUNDS IN THE SOILS OF THE CRIMEAN MOUNTAIN PLATEAUS AFTER AFFORESTATION
About 3 thousand hectares of forest stands were created on the surface of the Crimean mountain plateaus in the middle of the 20th century as a result of afforestation. Studies on the influence of these stands on the properties of mountain meadow soils (Phaeozems) showed that under the forest vegetation, the consolidation of structural aggregates, a decrease in the humus content, and an increase in acidity compared to the soils under the meadow vegetation, which could also affect other soil properties, including the mobility of some metals, were observed. The work objective of this research is to conduct a comparative analysis of the content of Pb, Mn, Cu, and Zn compounds available for biota (1 M ammonium acetate) in the soil under mountain meadows, natural beech forest, and artificial forest stands. Following the obtained results, the available Pb, Mn, and Cu compounds accumulated in the afforested mountain meadow soils relative to the adjacent mountain meadows areas. Thus, the average Pb content in the soil layer of 0–10 cm under the mountain pine stands in comparison with the soil under meadow vegetation was 1.6 times higher, Mn – 1.2 times, Cu – 1.2 times. The Pb content was 2.5 times higher, Mn – 1.5 times higher, and Cu – 1.2 times higher under the silver birch stands. The Pb content was 2.2 times higher, Mn – 2.4 times higher, and Cu – 1.5 times higher under Siberian larch stands. The Pb content was 1.9 times higher, Mn – 1.1 times higher, Cu – 1.3 times higher under the sycamore maple stands, compared to the meadow. Differences between afforested and meadow soils in the content of these elements in most cases were significant, except for the Zn content, signs of accumulation of which under artificial stands were not revealed. The Pb, Mn, and Cu content in the brown forest lessive soil (Luvisols) under the oriental beech corresponded to their concentration under the larch, and the Zn content was significantly higher compared to the soil under all species. The main reason for the increase in the mobility of some elements under tree stands is their transition from immobile forms under the influence of increased acidity of afforested soils. Wood litter due to the low content of trace elements in its composition cannot be a source of their accumulation in the topsoil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信