传感器网络定位的支持向量分类策略

D. Tran, T. Nguyen
{"title":"传感器网络定位的支持向量分类策略","authors":"D. Tran, T. Nguyen","doi":"10.1109/CCE.2006.350857","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the geographic locations of nodes in a wireless sensor network where most sensors are without an effective self-positioning functionality. A solution to this localization problem is proposed, which uses support vector machines (SVM) and mere connectivity information only. We investigate two versions of this solution, each employing a different multiclass SVM strategy. They are shown to perform well in various aspects such as localization error, processing efficiency, and effectiveness in addressing the border issue.","PeriodicalId":148533,"journal":{"name":"2006 First International Conference on Communications and Electronics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Support Vector Classification Strategies for Localization in Sensor Networks\",\"authors\":\"D. Tran, T. Nguyen\",\"doi\":\"10.1109/CCE.2006.350857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of estimating the geographic locations of nodes in a wireless sensor network where most sensors are without an effective self-positioning functionality. A solution to this localization problem is proposed, which uses support vector machines (SVM) and mere connectivity information only. We investigate two versions of this solution, each employing a different multiclass SVM strategy. They are shown to perform well in various aspects such as localization error, processing efficiency, and effectiveness in addressing the border issue.\",\"PeriodicalId\":148533,\"journal\":{\"name\":\"2006 First International Conference on Communications and Electronics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 First International Conference on Communications and Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCE.2006.350857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 First International Conference on Communications and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2006.350857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们考虑了无线传感器网络中节点的地理位置估计问题,其中大多数传感器没有有效的自定位功能。提出了一种基于支持向量机和单纯连接信息的定位方法。我们研究了该解决方案的两个版本,每个版本都采用了不同的多类支持向量机策略。它们在定位误差、处理效率和解决边界问题的有效性等各个方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support Vector Classification Strategies for Localization in Sensor Networks
We consider the problem of estimating the geographic locations of nodes in a wireless sensor network where most sensors are without an effective self-positioning functionality. A solution to this localization problem is proposed, which uses support vector machines (SVM) and mere connectivity information only. We investigate two versions of this solution, each employing a different multiclass SVM strategy. They are shown to perform well in various aspects such as localization error, processing efficiency, and effectiveness in addressing the border issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信