{"title":"位编织:在tcam中压缩包分类器的一种非前缀方法","authors":"C. Meiners, A. Liu, E. Torng","doi":"10.1109/ICNP.2009.5339695","DOIUrl":null,"url":null,"abstract":"Ternary Content Addressable Memories (TCAMs) have become the de facto standard in industry for fast packet classification. Unfortunately, TCAMs have limitations of small capacity, high power consumption, high heat generation, and high cost. The well-known range expansion problem exacerbates these limitations as each classifier rule typically has to be converted to multiple TCAM rules. One method for coping with these limitations is to use compression schemes to reduce the number of TCAM rules required to represent a classifier. Unfortunately, all existing compression schemes only produce prefix classifiers. Thus, they all miss the compression opportunities created by non-prefix ternary classifiers.","PeriodicalId":439867,"journal":{"name":"2009 17th IEEE International Conference on Network Protocols","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs\",\"authors\":\"C. Meiners, A. Liu, E. Torng\",\"doi\":\"10.1109/ICNP.2009.5339695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ternary Content Addressable Memories (TCAMs) have become the de facto standard in industry for fast packet classification. Unfortunately, TCAMs have limitations of small capacity, high power consumption, high heat generation, and high cost. The well-known range expansion problem exacerbates these limitations as each classifier rule typically has to be converted to multiple TCAM rules. One method for coping with these limitations is to use compression schemes to reduce the number of TCAM rules required to represent a classifier. Unfortunately, all existing compression schemes only produce prefix classifiers. Thus, they all miss the compression opportunities created by non-prefix ternary classifiers.\",\"PeriodicalId\":439867,\"journal\":{\"name\":\"2009 17th IEEE International Conference on Network Protocols\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th IEEE International Conference on Network Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2009.5339695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th IEEE International Conference on Network Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2009.5339695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bit weaving: A non-prefix approach to compressing packet classifiers in TCAMs
Ternary Content Addressable Memories (TCAMs) have become the de facto standard in industry for fast packet classification. Unfortunately, TCAMs have limitations of small capacity, high power consumption, high heat generation, and high cost. The well-known range expansion problem exacerbates these limitations as each classifier rule typically has to be converted to multiple TCAM rules. One method for coping with these limitations is to use compression schemes to reduce the number of TCAM rules required to represent a classifier. Unfortunately, all existing compression schemes only produce prefix classifiers. Thus, they all miss the compression opportunities created by non-prefix ternary classifiers.