{"title":"可注射陶瓷骨替代物中添加软骨粘附素对骨长入的影响","authors":"H. E. Ozturk, J. Wang, L. Lidgren, D. Heinegård","doi":"10.4303/BDA/D101105","DOIUrl":null,"url":null,"abstract":"Objective. The aim of the present study is to prepare a 3D porous silk fibroin scaffold with a hierachical structure that can meet the demands for bone tissue engineering. Materials and Methods. 3D fibroin scaffold was prepared by the methods of partial dissolution in acid solution and freeze drying fibroin solution. Results. The nets were composed of a mesh of randomly oriented fibers that ranged between 10 ?m and 30 ?m in diameter. Branchpoints and three dimensional open spaces were distributed throughout the structure with an average pore size of about 177.9 ± 40.0 ?m. Conclusion. With the methods of non-woven silk fibroin net preparation and frozen-dried technics, it is possible to prepare a 3D porous silk fibroin scaffold with hierachical fine structure.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"69 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Adding Chondroadherin to an Injectable Ceramic Bone Substitute on Bone Ingrowth\",\"authors\":\"H. E. Ozturk, J. Wang, L. Lidgren, D. Heinegård\",\"doi\":\"10.4303/BDA/D101105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective. The aim of the present study is to prepare a 3D porous silk fibroin scaffold with a hierachical structure that can meet the demands for bone tissue engineering. Materials and Methods. 3D fibroin scaffold was prepared by the methods of partial dissolution in acid solution and freeze drying fibroin solution. Results. The nets were composed of a mesh of randomly oriented fibers that ranged between 10 ?m and 30 ?m in diameter. Branchpoints and three dimensional open spaces were distributed throughout the structure with an average pore size of about 177.9 ± 40.0 ?m. Conclusion. With the methods of non-woven silk fibroin net preparation and frozen-dried technics, it is possible to prepare a 3D porous silk fibroin scaffold with hierachical fine structure.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":\"69 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4303/BDA/D101105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4303/BDA/D101105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Effect of Adding Chondroadherin to an Injectable Ceramic Bone Substitute on Bone Ingrowth
Objective. The aim of the present study is to prepare a 3D porous silk fibroin scaffold with a hierachical structure that can meet the demands for bone tissue engineering. Materials and Methods. 3D fibroin scaffold was prepared by the methods of partial dissolution in acid solution and freeze drying fibroin solution. Results. The nets were composed of a mesh of randomly oriented fibers that ranged between 10 ?m and 30 ?m in diameter. Branchpoints and three dimensional open spaces were distributed throughout the structure with an average pore size of about 177.9 ± 40.0 ?m. Conclusion. With the methods of non-woven silk fibroin net preparation and frozen-dried technics, it is possible to prepare a 3D porous silk fibroin scaffold with hierachical fine structure.