AR(∞)估计与非参数随机复杂性

L. Gerencsér
{"title":"AR(∞)估计与非参数随机复杂性","authors":"L. Gerencsér","doi":"10.1109/CDC.1990.203704","DOIUrl":null,"url":null,"abstract":"Let H* be the transfer function of a linear stochastic system such that H* and its inverse are in H infinity (D). Writing the system as an AR( infinity ) system, the best AR(k) approximation of the system is estimated using the method of least squares. Then the effect of undermodeling and parameter uncertainty (due to estimation) on prediction, and the optimal choice of k are investigated. The result is applied to the AR approximation of ARMA-systems.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AR( infinity ) estimation and nonparametric stochastic complexity\",\"authors\":\"L. Gerencsér\",\"doi\":\"10.1109/CDC.1990.203704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let H* be the transfer function of a linear stochastic system such that H* and its inverse are in H infinity (D). Writing the system as an AR( infinity ) system, the best AR(k) approximation of the system is estimated using the method of least squares. Then the effect of undermodeling and parameter uncertainty (due to estimation) on prediction, and the optimal choice of k are investigated. The result is applied to the AR approximation of ARMA-systems.<<ETX>>\",\"PeriodicalId\":287089,\"journal\":{\"name\":\"29th IEEE Conference on Decision and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1990.203704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设H*为线性随机系统的传递函数,使得H*及其逆在H∞(D)中。将系统写成AR(∞)系统,使用最小二乘法估计系统的最佳AR(k)近似值。然后研究了欠建模和参数不确定性(由于估计)对预测的影响,以及k的最优选择。结果应用于arma系统的AR逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AR( infinity ) estimation and nonparametric stochastic complexity
Let H* be the transfer function of a linear stochastic system such that H* and its inverse are in H infinity (D). Writing the system as an AR( infinity ) system, the best AR(k) approximation of the system is estimated using the method of least squares. Then the effect of undermodeling and parameter uncertainty (due to estimation) on prediction, and the optimal choice of k are investigated. The result is applied to the AR approximation of ARMA-systems.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信