基于马尔可夫随机场模型的多光谱数据融合:在卫星图像分类中的应用

D. Murray, J. Zerubia
{"title":"基于马尔可夫随机场模型的多光谱数据融合:在卫星图像分类中的应用","authors":"D. Murray, J. Zerubia","doi":"10.1109/SSAP.1994.572527","DOIUrl":null,"url":null,"abstract":"I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Spectral Data Fusion Using a Markov Random Field Model : Application to Satellite Image Classification\",\"authors\":\"D. Murray, J. Zerubia\",\"doi\":\"10.1109/SSAP.1994.572527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种多光谱卫星图像的分类方法。采用马尔可夫随机场方法实现多光谱图像的数据融合。将分类表示为能量最小化问题,并使用Gibbs采样器进行标签更新的模拟退火方法进行求解。给出了有监督和无监督两种不同的类训练方法的结果。所提出的融合方法比单一输入通道的融合方法效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Spectral Data Fusion Using a Markov Random Field Model : Application to Satellite Image Classification
I n this paper, we present a method of classifying multi-spectral satellite images. Data fusion of the multi-spectral images is achieved using a Markov random field approach. Classification is expressed as an energy minimization, problem and solved using Simulated Annealing with the Gibbs Sampler fo r label updating. The results of two digerent methods of class training, supervised and unsupervised, are shown. The proposed fusion method improved the results over those with only a single input channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信