{"title":"同调与同局部混合Hodge多项式的局部比较","authors":"Shoji Yokura","doi":"10.3792/pjaa.96.006","DOIUrl":null,"url":null,"abstract":"For a simply connected complex algebraic variey $X$, by the mixed Hodge structures $(W_{\\bullet}, F^{\\bullet})$ and $(\\tilde W_{\\bullet}, \\tilde F^{\\bullet})$ of the homology group $H_{*}(X;\\mathbb Q)$ and the homotopy groups $\\pi_{*}(X)\\otimes \\mathbb Q$ respectively, we have the following mixed Hodge polynomials $$MH_X(t,u,v):= \\sum_{k,p,q} \\operatorname{dim} \\Bigl ( Gr_{F^{\\bullet}}^{p} Gr^{W_{\\bullet}}_{p+q} H_k (X;\\mathbb C) \\Bigr) t^{k} u^{-p} v^{-q},$$ $$\\quad \\, \\, MH^{\\pi}_X(t,u,v):= \\sum_{k,p,q} \\operatorname{dim} \\Bigl (Gr_{\\tilde F^{\\bullet}}^{p} Gr^{\\tilde W_{\\bullet}}_{p+q} (\\pi_k(X) \\otimes \\mathbb C) \\Bigr ) t^ku^{-p} v^{-q},$$ which are respectively called \\emph{the homological mixed Hodge polynomial} and \\emph{the homotopical mixed Hodge polynomial}. In this paper we discuss some inequalities concerning these two mixed Hodge polynomials.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Local comparisons of homological and homotopical mixed Hodge polynomials\",\"authors\":\"Shoji Yokura\",\"doi\":\"10.3792/pjaa.96.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a simply connected complex algebraic variey $X$, by the mixed Hodge structures $(W_{\\\\bullet}, F^{\\\\bullet})$ and $(\\\\tilde W_{\\\\bullet}, \\\\tilde F^{\\\\bullet})$ of the homology group $H_{*}(X;\\\\mathbb Q)$ and the homotopy groups $\\\\pi_{*}(X)\\\\otimes \\\\mathbb Q$ respectively, we have the following mixed Hodge polynomials $$MH_X(t,u,v):= \\\\sum_{k,p,q} \\\\operatorname{dim} \\\\Bigl ( Gr_{F^{\\\\bullet}}^{p} Gr^{W_{\\\\bullet}}_{p+q} H_k (X;\\\\mathbb C) \\\\Bigr) t^{k} u^{-p} v^{-q},$$ $$\\\\quad \\\\, \\\\, MH^{\\\\pi}_X(t,u,v):= \\\\sum_{k,p,q} \\\\operatorname{dim} \\\\Bigl (Gr_{\\\\tilde F^{\\\\bullet}}^{p} Gr^{\\\\tilde W_{\\\\bullet}}_{p+q} (\\\\pi_k(X) \\\\otimes \\\\mathbb C) \\\\Bigr ) t^ku^{-p} v^{-q},$$ which are respectively called \\\\emph{the homological mixed Hodge polynomial} and \\\\emph{the homotopical mixed Hodge polynomial}. In this paper we discuss some inequalities concerning these two mixed Hodge polynomials.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3792/pjaa.96.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3792/pjaa.96.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Local comparisons of homological and homotopical mixed Hodge polynomials
For a simply connected complex algebraic variey $X$, by the mixed Hodge structures $(W_{\bullet}, F^{\bullet})$ and $(\tilde W_{\bullet}, \tilde F^{\bullet})$ of the homology group $H_{*}(X;\mathbb Q)$ and the homotopy groups $\pi_{*}(X)\otimes \mathbb Q$ respectively, we have the following mixed Hodge polynomials $$MH_X(t,u,v):= \sum_{k,p,q} \operatorname{dim} \Bigl ( Gr_{F^{\bullet}}^{p} Gr^{W_{\bullet}}_{p+q} H_k (X;\mathbb C) \Bigr) t^{k} u^{-p} v^{-q},$$ $$\quad \, \, MH^{\pi}_X(t,u,v):= \sum_{k,p,q} \operatorname{dim} \Bigl (Gr_{\tilde F^{\bullet}}^{p} Gr^{\tilde W_{\bullet}}_{p+q} (\pi_k(X) \otimes \mathbb C) \Bigr ) t^ku^{-p} v^{-q},$$ which are respectively called \emph{the homological mixed Hodge polynomial} and \emph{the homotopical mixed Hodge polynomial}. In this paper we discuss some inequalities concerning these two mixed Hodge polynomials.