深度网络优化算法收敛保证的基本方法

Vincent Roulet, Zaïd Harchaoui
{"title":"深度网络优化算法收敛保证的基本方法","authors":"Vincent Roulet, Zaïd Harchaoui","doi":"10.1109/ALLERTON.2019.8919835","DOIUrl":null,"url":null,"abstract":"We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on elementary arguments and computations. The convergence analysis revolves around the analytical and computational structures of optimization oracles central to the implementation of deep networks in machine learning software. We provide a systematic way to compute the smoothness constants that govern the convergence behavior of first-order optimization algorithms used to train deep networks. A diverse set of example components and architectures arising in modern deep networks intersperse the exposition to illustrate the approach.","PeriodicalId":120479,"journal":{"name":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Elementary Approach to Convergence Guarantees of Optimization Algorithms for Deep Networks\",\"authors\":\"Vincent Roulet, Zaïd Harchaoui\",\"doi\":\"10.1109/ALLERTON.2019.8919835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on elementary arguments and computations. The convergence analysis revolves around the analytical and computational structures of optimization oracles central to the implementation of deep networks in machine learning software. We provide a systematic way to compute the smoothness constants that govern the convergence behavior of first-order optimization algorithms used to train deep networks. A diverse set of example components and architectures arising in modern deep networks intersperse the exposition to illustrate the approach.\",\"PeriodicalId\":120479,\"journal\":{\"name\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2019.8919835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2019.8919835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于初等参数和计算的深度网络优化算法收敛保证的方法。收敛分析围绕优化预言机的分析和计算结构展开,这是机器学习软件中实现深度网络的核心。我们提供了一种系统的方法来计算控制用于训练深度网络的一阶优化算法收敛行为的平滑常数。在现代深度网络中出现的一组不同的示例组件和架构散布在阐述中,以说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Elementary Approach to Convergence Guarantees of Optimization Algorithms for Deep Networks
We present an approach to obtain convergence guarantees of optimization algorithms for deep networks based on elementary arguments and computations. The convergence analysis revolves around the analytical and computational structures of optimization oracles central to the implementation of deep networks in machine learning software. We provide a systematic way to compute the smoothness constants that govern the convergence behavior of first-order optimization algorithms used to train deep networks. A diverse set of example components and architectures arising in modern deep networks intersperse the exposition to illustrate the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信