基于gan的语音转换中残差补偿的自适应小波声码器

Berrak Sisman, Mingyang Zhang, S. Sakti, Haizhou Li, Satoshi Nakamura
{"title":"基于gan的语音转换中残差补偿的自适应小波声码器","authors":"Berrak Sisman, Mingyang Zhang, S. Sakti, Haizhou Li, Satoshi Nakamura","doi":"10.1109/SLT.2018.8639507","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use generative adversarial networks (GAN) together with a WaveNet vocoder to address the over-smoothing problem arising from the deep learning approaches to voice conversion, and to improve the vocoding quality over the traditional vocoders. As GAN aims to minimize the divergence between the natural and converted speech parameters, it effectively alleviates the over-smoothing problem in the converted speech. On the other hand, WaveNet vocoder allows us to leverage from the human speech of a large speaker population, thus improving the naturalness of the synthetic voice. Furthermore, for the first time, we study how to use WaveNet vocoder for residual compensation to improve the voice conversion performance. The experiments show that the proposed voice conversion framework consistently outperforms the baselines.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Adaptive Wavenet Vocoder for Residual Compensation in GAN-Based Voice Conversion\",\"authors\":\"Berrak Sisman, Mingyang Zhang, S. Sakti, Haizhou Li, Satoshi Nakamura\",\"doi\":\"10.1109/SLT.2018.8639507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use generative adversarial networks (GAN) together with a WaveNet vocoder to address the over-smoothing problem arising from the deep learning approaches to voice conversion, and to improve the vocoding quality over the traditional vocoders. As GAN aims to minimize the divergence between the natural and converted speech parameters, it effectively alleviates the over-smoothing problem in the converted speech. On the other hand, WaveNet vocoder allows us to leverage from the human speech of a large speaker population, thus improving the naturalness of the synthetic voice. Furthermore, for the first time, we study how to use WaveNet vocoder for residual compensation to improve the voice conversion performance. The experiments show that the proposed voice conversion framework consistently outperforms the baselines.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在本文中,我们提出将生成对抗网络(GAN)与WaveNet声码器结合使用,以解决深度学习方法在语音转换中产生的过度平滑问题,并提高传统声码器的声编码质量。由于GAN的目标是最小化自然语音参数和转换语音参数之间的差异,因此有效地缓解了转换语音中的过平滑问题。另一方面,WaveNet声码器允许我们利用大量说话者的人类语音,从而提高合成声音的自然度。此外,我们还首次研究了如何使用WaveNet声码器进行残差补偿,以提高语音转换性能。实验表明,所提出的语音转换框架始终优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Wavenet Vocoder for Residual Compensation in GAN-Based Voice Conversion
In this paper, we propose to use generative adversarial networks (GAN) together with a WaveNet vocoder to address the over-smoothing problem arising from the deep learning approaches to voice conversion, and to improve the vocoding quality over the traditional vocoders. As GAN aims to minimize the divergence between the natural and converted speech parameters, it effectively alleviates the over-smoothing problem in the converted speech. On the other hand, WaveNet vocoder allows us to leverage from the human speech of a large speaker population, thus improving the naturalness of the synthetic voice. Furthermore, for the first time, we study how to use WaveNet vocoder for residual compensation to improve the voice conversion performance. The experiments show that the proposed voice conversion framework consistently outperforms the baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信