完成Non-Orders和Fixed Points

A. Yamada, Jérémy Dubut
{"title":"完成Non-Orders和Fixed Points","authors":"A. Yamada, Jérémy Dubut","doi":"10.4230/LIPIcs.ITP.2019.30","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various completeness conditions and fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often without any property of ordering, thus complete non-orders. In particular, we generalize the Knaster–Tarski theorem so that we ensure the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that the set of quasi-fixed points is complete under a mild condition – attractivity – which is implied by either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and Maaden. Finally, we recover Kleene’s fixed-point theorem for omega-complete non-orders, again using attractivity to prove that Kleene’s fixed points are least quasi-fixed points.","PeriodicalId":280633,"journal":{"name":"Arch. Formal Proofs","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Complete Non-Orders and Fixed Points\",\"authors\":\"A. Yamada, Jérémy Dubut\",\"doi\":\"10.4230/LIPIcs.ITP.2019.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various completeness conditions and fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often without any property of ordering, thus complete non-orders. In particular, we generalize the Knaster–Tarski theorem so that we ensure the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that the set of quasi-fixed points is complete under a mild condition – attractivity – which is implied by either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and Maaden. Finally, we recover Kleene’s fixed-point theorem for omega-complete non-orders, again using attractivity to prove that Kleene’s fixed points are least quasi-fixed points.\",\"PeriodicalId\":280633,\"journal\":{\"name\":\"Arch. Formal Proofs\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arch. Formal Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ITP.2019.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arch. Formal Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ITP.2019.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们开发了一个有序理论概念的Isabelle/HOL库,如各种完备性条件和不动点定理。我们使我们的形式化尽可能地一般化:我们重新证明了几个众所周知的关于完全序的结果,这些结果通常没有任何有序的性质,因此是完全非有序的。特别地,我们推广了Knaster-Tarski定理,从而保证了完全非阶单调映射的拟不动点的存在性,并证明了拟不动点集在一个温和的条件下是完全的,这个条件是由反对称或传递性暗示的吸引性。这个结果推广并加强了Stauti和Maaden的结果。最后,我们恢复了-完全非阶的Kleene不动点定理,再次利用吸引性证明了Kleene不动点是最小拟不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Non-Orders and Fixed Points
In this paper, we develop an Isabelle/HOL library of order-theoretic concepts, such as various completeness conditions and fixed-point theorems. We keep our formalization as general as possible: we reprove several well-known results about complete orders, often without any property of ordering, thus complete non-orders. In particular, we generalize the Knaster–Tarski theorem so that we ensure the existence of a quasi-fixed point of monotone maps over complete non-orders, and show that the set of quasi-fixed points is complete under a mild condition – attractivity – which is implied by either antisymmetry or transitivity. This result generalizes and strengthens a result by Stauti and Maaden. Finally, we recover Kleene’s fixed-point theorem for omega-complete non-orders, again using attractivity to prove that Kleene’s fixed points are least quasi-fixed points.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信