E. González-Sosa, R. Vera-Rodríguez, Julian Fierrez, Vishal M. Patel
{"title":"毫米波人物识别:手工制作与学习特征","authors":"E. González-Sosa, R. Vera-Rodríguez, Julian Fierrez, Vishal M. Patel","doi":"10.1109/ISBA.2017.7947692","DOIUrl":null,"url":null,"abstract":"Imaging using millimeter waves (mmWs) has many advantages including ability to penetrate obscurants such as clothes and polymers. Although conceal weapon detection has been the predominant mmW imaging application, in this paper, we aim to gain some insight about the potential of using mmW images for person recognition. We report experimental results using the mmW TNO database consisting of 50 individuals based on both hand-crafted and learned features from Alexnet and VGG-face pretrained CNN models. Results suggest that: i) mmW torso region is more discriminative than mmW face and the entire body, ii) CNN features produce better results compared to hand-crafted features on mmW faces and the entire body, and iii) hand-crafted features slightly outperform CNN features on mmW torso.","PeriodicalId":436086,"journal":{"name":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Millimetre wave person recognition: Hand-crafted vs learned features\",\"authors\":\"E. González-Sosa, R. Vera-Rodríguez, Julian Fierrez, Vishal M. Patel\",\"doi\":\"10.1109/ISBA.2017.7947692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imaging using millimeter waves (mmWs) has many advantages including ability to penetrate obscurants such as clothes and polymers. Although conceal weapon detection has been the predominant mmW imaging application, in this paper, we aim to gain some insight about the potential of using mmW images for person recognition. We report experimental results using the mmW TNO database consisting of 50 individuals based on both hand-crafted and learned features from Alexnet and VGG-face pretrained CNN models. Results suggest that: i) mmW torso region is more discriminative than mmW face and the entire body, ii) CNN features produce better results compared to hand-crafted features on mmW faces and the entire body, and iii) hand-crafted features slightly outperform CNN features on mmW torso.\",\"PeriodicalId\":436086,\"journal\":{\"name\":\"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBA.2017.7947692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2017.7947692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Millimetre wave person recognition: Hand-crafted vs learned features
Imaging using millimeter waves (mmWs) has many advantages including ability to penetrate obscurants such as clothes and polymers. Although conceal weapon detection has been the predominant mmW imaging application, in this paper, we aim to gain some insight about the potential of using mmW images for person recognition. We report experimental results using the mmW TNO database consisting of 50 individuals based on both hand-crafted and learned features from Alexnet and VGG-face pretrained CNN models. Results suggest that: i) mmW torso region is more discriminative than mmW face and the entire body, ii) CNN features produce better results compared to hand-crafted features on mmW faces and the entire body, and iii) hand-crafted features slightly outperform CNN features on mmW torso.