用遗传算法求解电价区间配置封闭优化的双层问题

Tim Felling
{"title":"用遗传算法求解电价区间配置封闭优化的双层问题","authors":"Tim Felling","doi":"10.2139/ssrn.3425831","DOIUrl":null,"url":null,"abstract":"The topic of alternative price zone configurations is frequently discussed in Central Western Europe where – so far – national borders coincide with borders of price zones. Reconfiguring these price zones is one option in order to improve congestion management, foster trading across borders of price zones and, thus, to increase welfare. In view of the significant increase in redispatch volumes and costs over the last years due to increasing feed-in from renewable energy sources in conjunction with delayed grid expansion, this topic has gained in importance. To determine these improved price zone configurations for a large-scale system like Central Western Europe, often either configurations based on expert guesses are considered or heuristics using approximate criteria like locational marginal prices are used to obtain price zones through clustering. In contrast, the present paper formulates a bi-level optimization problem of how to determine optimal configurations in terms of system costs and – given the size and nature of the problem – solves it with a specially developed genetic algorithm. Resulting price zone configurations are compared to both exogenously given, expert-based price zone configurations from the Entso-E bidding zone study and endogenously assessed configurations from a hierarchical cluster algorithm. Results show that the genetic algorithm achieves best results in terms of system costs. Moreover, the comparison with solutions from a hierarchical cluster analysis reveals important drawbacks of the latter methodology.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solving the Bi-level Problem of a Closed Optimization of Electricity Price Zone Configurations using a Genetic Algorithm\",\"authors\":\"Tim Felling\",\"doi\":\"10.2139/ssrn.3425831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topic of alternative price zone configurations is frequently discussed in Central Western Europe where – so far – national borders coincide with borders of price zones. Reconfiguring these price zones is one option in order to improve congestion management, foster trading across borders of price zones and, thus, to increase welfare. In view of the significant increase in redispatch volumes and costs over the last years due to increasing feed-in from renewable energy sources in conjunction with delayed grid expansion, this topic has gained in importance. To determine these improved price zone configurations for a large-scale system like Central Western Europe, often either configurations based on expert guesses are considered or heuristics using approximate criteria like locational marginal prices are used to obtain price zones through clustering. In contrast, the present paper formulates a bi-level optimization problem of how to determine optimal configurations in terms of system costs and – given the size and nature of the problem – solves it with a specially developed genetic algorithm. Resulting price zone configurations are compared to both exogenously given, expert-based price zone configurations from the Entso-E bidding zone study and endogenously assessed configurations from a hierarchical cluster algorithm. Results show that the genetic algorithm achieves best results in terms of system costs. Moreover, the comparison with solutions from a hierarchical cluster analysis reveals important drawbacks of the latter methodology.\",\"PeriodicalId\":365755,\"journal\":{\"name\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3425831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3425831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在西欧中部,到目前为止,各国的边界与价格区边界是一致的。重新配置这些价格区是一种选择,可以改善拥堵管理,促进价格区跨境交易,从而增加福利。鉴于在过去几年中,由于可再生能源的上网增加以及电网扩张的推迟,重新调度的数量和成本显著增加,这一主题变得越来越重要。为了确定像中欧西欧这样的大规模系统的这些改进的价格区域配置,通常要么考虑基于专家猜测的配置,要么使用使用近似标准(如位置边际价格)的启发式方法通过聚类来获得价格区域。相比之下,本文提出了一个双层优化问题,即如何根据系统成本确定最优配置,并在给定问题的大小和性质的情况下,用一种专门开发的遗传算法解决了这个问题。最终的价格区域配置与来自Entso-E投标区域研究的外生给定的、基于专家的价格区域配置和来自分层聚类算法的内生评估配置进行了比较。结果表明,遗传算法在系统成本方面取得了最好的结果。此外,与层次聚类分析的解决方案的比较揭示了后者方法的重要缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving the Bi-level Problem of a Closed Optimization of Electricity Price Zone Configurations using a Genetic Algorithm
The topic of alternative price zone configurations is frequently discussed in Central Western Europe where – so far – national borders coincide with borders of price zones. Reconfiguring these price zones is one option in order to improve congestion management, foster trading across borders of price zones and, thus, to increase welfare. In view of the significant increase in redispatch volumes and costs over the last years due to increasing feed-in from renewable energy sources in conjunction with delayed grid expansion, this topic has gained in importance. To determine these improved price zone configurations for a large-scale system like Central Western Europe, often either configurations based on expert guesses are considered or heuristics using approximate criteria like locational marginal prices are used to obtain price zones through clustering. In contrast, the present paper formulates a bi-level optimization problem of how to determine optimal configurations in terms of system costs and – given the size and nature of the problem – solves it with a specially developed genetic algorithm. Resulting price zone configurations are compared to both exogenously given, expert-based price zone configurations from the Entso-E bidding zone study and endogenously assessed configurations from a hierarchical cluster algorithm. Results show that the genetic algorithm achieves best results in terms of system costs. Moreover, the comparison with solutions from a hierarchical cluster analysis reveals important drawbacks of the latter methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信