同时摄动双向联想存储器的FPGA实现

Y. Maeda, M. Wakamura
{"title":"同时摄动双向联想存储器的FPGA实现","authors":"Y. Maeda, M. Wakamura","doi":"10.1109/NNSP.2003.1318029","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks have interesting properties and can handle dynamic information processing unlike the ordinary feedforward neural networks. Bidirectional associative memory (BAM) is a typical recurrent network. Ordinarily, weights of the BAM are determined by the Hebb's learning. In this paper, a recursive learning scheme for BAM is proposed and its hardware implementation is described. The learning scheme is applicable to analogue BAM as well. A simulation result and details of the implementation are shown.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA implementation of bidirectional associative memory using simultaneous perturbation\",\"authors\":\"Y. Maeda, M. Wakamura\",\"doi\":\"10.1109/NNSP.2003.1318029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks have interesting properties and can handle dynamic information processing unlike the ordinary feedforward neural networks. Bidirectional associative memory (BAM) is a typical recurrent network. Ordinarily, weights of the BAM are determined by the Hebb's learning. In this paper, a recursive learning scheme for BAM is proposed and its hardware implementation is described. The learning scheme is applicable to analogue BAM as well. A simulation result and details of the implementation are shown.\",\"PeriodicalId\":315958,\"journal\":{\"name\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2003.1318029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与普通的前馈神经网络不同,递归神经网络具有有趣的特性,可以处理动态信息。双向联想记忆是一种典型的循环网络。通常,BAM的权重由Hebb学习决定。本文提出了一种基于BAM的递归学习方案,并对其硬件实现进行了描述。该学习方案同样适用于模拟BAM。给出了仿真结果和实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA implementation of bidirectional associative memory using simultaneous perturbation
Recurrent neural networks have interesting properties and can handle dynamic information processing unlike the ordinary feedforward neural networks. Bidirectional associative memory (BAM) is a typical recurrent network. Ordinarily, weights of the BAM are determined by the Hebb's learning. In this paper, a recursive learning scheme for BAM is proposed and its hardware implementation is described. The learning scheme is applicable to analogue BAM as well. A simulation result and details of the implementation are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信