基于多尺度聚类的彩色图像分割

N. Kehtarnavaz, J. Monaco, J. Nimtschek, A. Weeks
{"title":"基于多尺度聚类的彩色图像分割","authors":"N. Kehtarnavaz, J. Monaco, J. Nimtschek, A. Weeks","doi":"10.1109/IAI.1998.666875","DOIUrl":null,"url":null,"abstract":"The use of clustering in color image segmentation poses two distinct problems: (a) equal distances throughout a color space may not be perceived equally by the human visual system, and (b) the number of color clusters must be predetermined. This paper describes a color clustering method that resolves these problems. The first problem is addressed by operating in the nonlinear, geodesic chromaticity space where color shifts are nearly uniform. The second problem is remedied by utilizing a newly developed multi-scale clustering algorithm. This algorithm determines the prominent numbers of color clusters via an objective measure named lifetime. The obtained segmentation results indicate that this color segmentation approach identifies the prominent color structures or objects in a color image.","PeriodicalId":373701,"journal":{"name":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Color image segmentation using multi-scale clustering\",\"authors\":\"N. Kehtarnavaz, J. Monaco, J. Nimtschek, A. Weeks\",\"doi\":\"10.1109/IAI.1998.666875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of clustering in color image segmentation poses two distinct problems: (a) equal distances throughout a color space may not be perceived equally by the human visual system, and (b) the number of color clusters must be predetermined. This paper describes a color clustering method that resolves these problems. The first problem is addressed by operating in the nonlinear, geodesic chromaticity space where color shifts are nearly uniform. The second problem is remedied by utilizing a newly developed multi-scale clustering algorithm. This algorithm determines the prominent numbers of color clusters via an objective measure named lifetime. The obtained segmentation results indicate that this color segmentation approach identifies the prominent color structures or objects in a color image.\",\"PeriodicalId\":373701,\"journal\":{\"name\":\"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.1998.666875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1998.666875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在彩色图像分割中使用聚类会产生两个明显的问题:(a)人类视觉系统可能无法平等地感知整个颜色空间的相等距离,以及(b)颜色聚类的数量必须预先确定。本文提出了一种解决这些问题的颜色聚类方法。第一个问题是通过在非线性测地线色度空间中操作来解决的,其中颜色偏移几乎是均匀的。第二个问题是利用新开发的多尺度聚类算法来解决的。该算法通过一种称为寿命的客观度量来确定颜色簇的突出数。得到的分割结果表明,该方法能够识别出彩色图像中突出的颜色结构或物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Color image segmentation using multi-scale clustering
The use of clustering in color image segmentation poses two distinct problems: (a) equal distances throughout a color space may not be perceived equally by the human visual system, and (b) the number of color clusters must be predetermined. This paper describes a color clustering method that resolves these problems. The first problem is addressed by operating in the nonlinear, geodesic chromaticity space where color shifts are nearly uniform. The second problem is remedied by utilizing a newly developed multi-scale clustering algorithm. This algorithm determines the prominent numbers of color clusters via an objective measure named lifetime. The obtained segmentation results indicate that this color segmentation approach identifies the prominent color structures or objects in a color image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信