{"title":"基于高斯过程的全驱动六旋翼无人机鲁棒姿态跟踪控制","authors":"Tatsuya Ibuki, Hirotoshi Yoshioka, M. Sampei","doi":"10.1080/18824889.2022.2125242","DOIUrl":null,"url":null,"abstract":"This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust pose tracking control for a fully-actuated hexarotor UAV based on Gaussian processes\",\"authors\":\"Tatsuya Ibuki, Hirotoshi Yoshioka, M. Sampei\",\"doi\":\"10.1080/18824889.2022.2125242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.\",\"PeriodicalId\":413922,\"journal\":{\"name\":\"SICE journal of control, measurement, and system integration\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE journal of control, measurement, and system integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/18824889.2022.2125242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2022.2125242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust pose tracking control for a fully-actuated hexarotor UAV based on Gaussian processes
This paper presents a robust position/attitude tracking control method for a fully-actuated hexarotor unmanned aerial vehicle (UAV) based on Gaussian processes. Multirotor UAVs suffer from modelling errors due to their structure complexity and aerodynamical disturbances whose perfect mathematical formulation is intractable. To handle this issue, this paper incorporates a data-based learning technique with model-based control. The hexarotor UAV dynamical model, considering modelling errors and aerodynamic disturbances as unknown dynamics, is first derived. Gaussian process regression is next introduced as a learning method for the unknown dynamics, which provides probabilistic distributions of the predicted values. The predicted means are regarded as deterministic information and cancelled out by feedforward control inputs. The predicted variances are considered as the bounds of the model uncertainties with high probability, and a robust control method to ensure ultimate boundedness of the tracking control error is proposed for the uncertain system. The effectiveness of the proposed method is demonstrated via experiments with a self-developed hexarotor UAV testbed.