动态恶意软件检测和记录使用虚拟机自省

A. More, S. Tapaswi
{"title":"动态恶意软件检测和记录使用虚拟机自省","authors":"A. More, S. Tapaswi","doi":"10.1109/BPM.2013.6615011","DOIUrl":null,"url":null,"abstract":"Detecting and collecting malware samples is considered to be a milestone in computer security. Recording entire Virtual Machine (VM) activities requires considerable resources and it is not the wiser choice too. Our approach is combination of Virtual machine introspection (VMI), file system clustering, malware activity recording. The proposed framework consists of four steps. In initial step possible executable codes are detected using clustering algorithm. Next step monitors process and information flow for these executables using VMI. The data and information flow graph is generated for such processes. Malicious graphs among all are detected in next step. Final step comprises of recording malicious graphs and commitment of VM. We have implemented the prototype of this framework on leading hypervisor for Windows OS. Experimental results shows that it is better way to detect and store malicious processes than storing entire VM. We believe it as a cost effective intelligent solution for malware recording.","PeriodicalId":186910,"journal":{"name":"DSCI - Best Practices Meet 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic malware detection and recording using virtual machine introspection\",\"authors\":\"A. More, S. Tapaswi\",\"doi\":\"10.1109/BPM.2013.6615011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting and collecting malware samples is considered to be a milestone in computer security. Recording entire Virtual Machine (VM) activities requires considerable resources and it is not the wiser choice too. Our approach is combination of Virtual machine introspection (VMI), file system clustering, malware activity recording. The proposed framework consists of four steps. In initial step possible executable codes are detected using clustering algorithm. Next step monitors process and information flow for these executables using VMI. The data and information flow graph is generated for such processes. Malicious graphs among all are detected in next step. Final step comprises of recording malicious graphs and commitment of VM. We have implemented the prototype of this framework on leading hypervisor for Windows OS. Experimental results shows that it is better way to detect and store malicious processes than storing entire VM. We believe it as a cost effective intelligent solution for malware recording.\",\"PeriodicalId\":186910,\"journal\":{\"name\":\"DSCI - Best Practices Meet 2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DSCI - Best Practices Meet 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BPM.2013.6615011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DSCI - Best Practices Meet 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BPM.2013.6615011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

检测和收集恶意软件样本被认为是计算机安全的一个里程碑。记录整个虚拟机(VM)活动需要大量的资源,这也不是明智的选择。我们的方法是结合虚拟机自省(VMI),文件系统集群,恶意软件活动记录。提议的框架包括四个步骤。在初始阶段,使用聚类算法检测可能的可执行代码。下一步使用VMI监视这些可执行文件的进程和信息流。为这些流程生成数据和信息流图。下一步将检测其中的恶意图形。最后一步包括恶意图的记录和VM的提交。我们已经在领先的Windows操作系统管理程序上实现了该框架的原型。实验结果表明,该方法比存储整个虚拟机更好地检测和存储恶意进程。我们相信这是一个具有成本效益的恶意软件记录智能解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic malware detection and recording using virtual machine introspection
Detecting and collecting malware samples is considered to be a milestone in computer security. Recording entire Virtual Machine (VM) activities requires considerable resources and it is not the wiser choice too. Our approach is combination of Virtual machine introspection (VMI), file system clustering, malware activity recording. The proposed framework consists of four steps. In initial step possible executable codes are detected using clustering algorithm. Next step monitors process and information flow for these executables using VMI. The data and information flow graph is generated for such processes. Malicious graphs among all are detected in next step. Final step comprises of recording malicious graphs and commitment of VM. We have implemented the prototype of this framework on leading hypervisor for Windows OS. Experimental results shows that it is better way to detect and store malicious processes than storing entire VM. We believe it as a cost effective intelligent solution for malware recording.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信