{"title":"模糊逼近空间上多颗粒粗糙集的拓扑性质","authors":"B. Tripathy, S. K. Parida, Sudam Charan Parida","doi":"10.4018/IJRSDA.2019040101","DOIUrl":null,"url":null,"abstract":"One of the extensions of the basic rough set model introduced by Pawlak in 1982 is the notion of rough sets on fuzzy approximation spaces. It is based upon a fuzzy proximity relation defined over a Universe. As is well known, an equivalence relation provides a granularization of the universe on which it is defined. However, a single relation defines only single granularization and as such to handle multiple granularity over a universe simultaneously, two notions of multigranulations have been introduced. These are the optimistic and pessimistic multigranulation. The notion of multigranulation over fuzzy approximation spaces were introduced recently in 2018. Topological properties of rough sets are an important characteristic, which along with accuracy measure forms the two facets of rough set application as mentioned by Pawlak. In this article, the authors introduce the concept of topological property of multigranular rough sets on fuzzy approximation spaces and study its properties.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Topological Properties of Multigranular Rough sets on Fuzzy Approximation Spaces\",\"authors\":\"B. Tripathy, S. K. Parida, Sudam Charan Parida\",\"doi\":\"10.4018/IJRSDA.2019040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the extensions of the basic rough set model introduced by Pawlak in 1982 is the notion of rough sets on fuzzy approximation spaces. It is based upon a fuzzy proximity relation defined over a Universe. As is well known, an equivalence relation provides a granularization of the universe on which it is defined. However, a single relation defines only single granularization and as such to handle multiple granularity over a universe simultaneously, two notions of multigranulations have been introduced. These are the optimistic and pessimistic multigranulation. The notion of multigranulation over fuzzy approximation spaces were introduced recently in 2018. Topological properties of rough sets are an important characteristic, which along with accuracy measure forms the two facets of rough set application as mentioned by Pawlak. In this article, the authors introduce the concept of topological property of multigranular rough sets on fuzzy approximation spaces and study its properties.\",\"PeriodicalId\":152357,\"journal\":{\"name\":\"Int. J. Rough Sets Data Anal.\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Rough Sets Data Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRSDA.2019040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2019040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological Properties of Multigranular Rough sets on Fuzzy Approximation Spaces
One of the extensions of the basic rough set model introduced by Pawlak in 1982 is the notion of rough sets on fuzzy approximation spaces. It is based upon a fuzzy proximity relation defined over a Universe. As is well known, an equivalence relation provides a granularization of the universe on which it is defined. However, a single relation defines only single granularization and as such to handle multiple granularity over a universe simultaneously, two notions of multigranulations have been introduced. These are the optimistic and pessimistic multigranulation. The notion of multigranulation over fuzzy approximation spaces were introduced recently in 2018. Topological properties of rough sets are an important characteristic, which along with accuracy measure forms the two facets of rough set application as mentioned by Pawlak. In this article, the authors introduce the concept of topological property of multigranular rough sets on fuzzy approximation spaces and study its properties.