为提高柴油和风力发电单机微电网电能质量和运行效率的混合储能系统的统一补偿控制

J. Jeon, Jong-Yul Kim, Seul-Ki Kim, Jang-Mok Kim
{"title":"为提高柴油和风力发电单机微电网电能质量和运行效率的混合储能系统的统一补偿控制","authors":"J. Jeon, Jong-Yul Kim, Seul-Ki Kim, Jang-Mok Kim","doi":"10.1109/PEDG.2012.6254012","DOIUrl":null,"url":null,"abstract":"An intermittent power of renewable sources such as wind turbine and photovoltaic system can damage power quality and operation efficiency of generator. Specially, in case of standalone microgrid such as island power system, this intermittent characteristic of renewable resource can lead to severe problems, such as frequency oscillation and power fluctuation. This frequency oscillation and power fluctuation can be a cause of system stability problem and operation efficiency drop. This paper presents unified compensation control strategy of a hybrid electric energy storage system in order to improve power quality and operating efficiency in a diesel and wind-turbine based stand-alone microgrid. This study addressed an AC hybrid energy storage system which was composed of lead acid battery storage and electric double layered capacitor, and presented a compensation control strategy with modified droop and wind power compensation for damping system frequency and power fluctuation. Usefulness of the proposed control algorithm is verified by experimental test results for system frequency, voltage, power fluctuation of the generator, and operation efficiency. Comparison tests with conventional compensation methods were performed to validate the effectiveness of the proposed control method.","PeriodicalId":146438,"journal":{"name":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Unified compensation control of a hybrid energy storage system for enhancing power quality and operation efficiency in a diesel and wind-turbine based stand-alone microgrid\",\"authors\":\"J. Jeon, Jong-Yul Kim, Seul-Ki Kim, Jang-Mok Kim\",\"doi\":\"10.1109/PEDG.2012.6254012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intermittent power of renewable sources such as wind turbine and photovoltaic system can damage power quality and operation efficiency of generator. Specially, in case of standalone microgrid such as island power system, this intermittent characteristic of renewable resource can lead to severe problems, such as frequency oscillation and power fluctuation. This frequency oscillation and power fluctuation can be a cause of system stability problem and operation efficiency drop. This paper presents unified compensation control strategy of a hybrid electric energy storage system in order to improve power quality and operating efficiency in a diesel and wind-turbine based stand-alone microgrid. This study addressed an AC hybrid energy storage system which was composed of lead acid battery storage and electric double layered capacitor, and presented a compensation control strategy with modified droop and wind power compensation for damping system frequency and power fluctuation. Usefulness of the proposed control algorithm is verified by experimental test results for system frequency, voltage, power fluctuation of the generator, and operation efficiency. Comparison tests with conventional compensation methods were performed to validate the effectiveness of the proposed control method.\",\"PeriodicalId\":146438,\"journal\":{\"name\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDG.2012.6254012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDG.2012.6254012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

风力发电机组、光伏发电系统等可再生能源的间歇性发电会影响发电机组的电能质量和运行效率。特别是在孤岛电力系统等独立的微电网中,可再生资源的这种间歇性会导致频率振荡和功率波动等严重问题。这种频率振荡和功率波动会导致系统稳定性问题和运行效率下降。为了提高单机微电网的电能质量和运行效率,提出了一种混合电力储能系统的统一补偿控制策略。研究了由铅酸蓄电池储能和电双层电容器组成的交流混合储能系统,提出了一种修正下垂和风电补偿的补偿控制策略,以阻尼系统频率和功率波动。通过对系统频率、电压、发电机功率波动和运行效率的实验测试,验证了所提控制算法的有效性。通过与传统补偿方法的对比试验,验证了所提控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified compensation control of a hybrid energy storage system for enhancing power quality and operation efficiency in a diesel and wind-turbine based stand-alone microgrid
An intermittent power of renewable sources such as wind turbine and photovoltaic system can damage power quality and operation efficiency of generator. Specially, in case of standalone microgrid such as island power system, this intermittent characteristic of renewable resource can lead to severe problems, such as frequency oscillation and power fluctuation. This frequency oscillation and power fluctuation can be a cause of system stability problem and operation efficiency drop. This paper presents unified compensation control strategy of a hybrid electric energy storage system in order to improve power quality and operating efficiency in a diesel and wind-turbine based stand-alone microgrid. This study addressed an AC hybrid energy storage system which was composed of lead acid battery storage and electric double layered capacitor, and presented a compensation control strategy with modified droop and wind power compensation for damping system frequency and power fluctuation. Usefulness of the proposed control algorithm is verified by experimental test results for system frequency, voltage, power fluctuation of the generator, and operation efficiency. Comparison tests with conventional compensation methods were performed to validate the effectiveness of the proposed control method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信