基于离散化的两相光谱聚类

Qiju Kang, Ying Qian, L. Sun, Hai Yu, Jianyu Wang
{"title":"基于离散化的两相光谱聚类","authors":"Qiju Kang, Ying Qian, L. Sun, Hai Yu, Jianyu Wang","doi":"10.1109/IHMSC.2013.65","DOIUrl":null,"url":null,"abstract":"As spectral clustering has become increasingly popular in recent years, further research on it is very important. Due to the important role of discretization in data mining, a new clustering approach integrating discretization with density-sensitive spectral clustering namely density-sensitive spectral clustering of categorized data (DSSCCAT) is proposed. To alleviate the high computational complexity of DSSCCAT, two-phase spectral clustering (TPSC) algorithm is proposed, which involves two phases: construct the representatives of the original dataset and cluster the representatives with DSSCCAT. Experimental results on UCI datasets show the feasibility of combining discretization with density-sensitive spectral clustering. TPSC can obtain desirable clusters with high performance. Furthermore, TPSC outperforms DSSCCAT obviously in terms of computational time.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-Phase Spectral Clustering Based on Discretization\",\"authors\":\"Qiju Kang, Ying Qian, L. Sun, Hai Yu, Jianyu Wang\",\"doi\":\"10.1109/IHMSC.2013.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As spectral clustering has become increasingly popular in recent years, further research on it is very important. Due to the important role of discretization in data mining, a new clustering approach integrating discretization with density-sensitive spectral clustering namely density-sensitive spectral clustering of categorized data (DSSCCAT) is proposed. To alleviate the high computational complexity of DSSCCAT, two-phase spectral clustering (TPSC) algorithm is proposed, which involves two phases: construct the representatives of the original dataset and cluster the representatives with DSSCCAT. Experimental results on UCI datasets show the feasibility of combining discretization with density-sensitive spectral clustering. TPSC can obtain desirable clusters with high performance. Furthermore, TPSC outperforms DSSCCAT obviously in terms of computational time.\",\"PeriodicalId\":222375,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2013.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着近年来光谱聚类技术的日益普及,对其进行深入的研究具有十分重要的意义。鉴于离散化在数据挖掘中的重要作用,提出了一种将离散化与密度敏感谱聚类相结合的聚类方法——分类数据密度敏感谱聚类(DSSCCAT)。为了解决DSSCCAT算法计算复杂度高的问题,提出了两阶段谱聚类算法(TPSC),该算法包括两个阶段:首先构造原始数据集的代表,然后用DSSCCAT对代表进行聚类。在UCI数据集上的实验结果表明,离散化与密度敏感谱聚类相结合是可行的。TPSC可以获得理想的高性能集群。此外,TPSC在计算时间方面明显优于DSSCCAT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Phase Spectral Clustering Based on Discretization
As spectral clustering has become increasingly popular in recent years, further research on it is very important. Due to the important role of discretization in data mining, a new clustering approach integrating discretization with density-sensitive spectral clustering namely density-sensitive spectral clustering of categorized data (DSSCCAT) is proposed. To alleviate the high computational complexity of DSSCCAT, two-phase spectral clustering (TPSC) algorithm is proposed, which involves two phases: construct the representatives of the original dataset and cluster the representatives with DSSCCAT. Experimental results on UCI datasets show the feasibility of combining discretization with density-sensitive spectral clustering. TPSC can obtain desirable clusters with high performance. Furthermore, TPSC outperforms DSSCCAT obviously in terms of computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信