M. Giannaccini, Keren Yue, J. Graveston, M. Birchall, A. Conn, J. Rossiter
{"title":"用于机器人呼吸道治疗的呼吸模拟器","authors":"M. Giannaccini, Keren Yue, J. Graveston, M. Birchall, A. Conn, J. Rossiter","doi":"10.1109/ROBIO.2017.8324764","DOIUrl":null,"url":null,"abstract":"Robotic healthcare is a growing and multi-faceted field where robots help perform surgery, remotely provide care to patients, aid in supplying various physical therapies and further medical research. Robotic simulators of human physiology provide a powerful platform to advance the development of novel treatments, prostheses and therapies. This study focuses on the design, building, testing and characterisation of a novel simulator of the human respiratory system. The comparison between healthy subjects breathing and coughing physiological values and the values achieved utilising our novel bioinspired respiratory simulator shows that the latter is able to reproduce peak flow rates and volumes.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Respiratory simulator for robotic respiratory tract treatments\",\"authors\":\"M. Giannaccini, Keren Yue, J. Graveston, M. Birchall, A. Conn, J. Rossiter\",\"doi\":\"10.1109/ROBIO.2017.8324764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic healthcare is a growing and multi-faceted field where robots help perform surgery, remotely provide care to patients, aid in supplying various physical therapies and further medical research. Robotic simulators of human physiology provide a powerful platform to advance the development of novel treatments, prostheses and therapies. This study focuses on the design, building, testing and characterisation of a novel simulator of the human respiratory system. The comparison between healthy subjects breathing and coughing physiological values and the values achieved utilising our novel bioinspired respiratory simulator shows that the latter is able to reproduce peak flow rates and volumes.\",\"PeriodicalId\":197159,\"journal\":{\"name\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2017.8324764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Respiratory simulator for robotic respiratory tract treatments
Robotic healthcare is a growing and multi-faceted field where robots help perform surgery, remotely provide care to patients, aid in supplying various physical therapies and further medical research. Robotic simulators of human physiology provide a powerful platform to advance the development of novel treatments, prostheses and therapies. This study focuses on the design, building, testing and characterisation of a novel simulator of the human respiratory system. The comparison between healthy subjects breathing and coughing physiological values and the values achieved utilising our novel bioinspired respiratory simulator shows that the latter is able to reproduce peak flow rates and volumes.