一种可视化的时空数据挖掘方法

Mohand Tahar Kechadi, M. Bertolotto
{"title":"一种可视化的时空数据挖掘方法","authors":"Mohand Tahar Kechadi, M. Bertolotto","doi":"10.1109/IRI.2006.252465","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system for mining very large spatio-temporal datasets. The system comprises new techniques to efficiently support the data-mining process, address the spatial and temporal dimensions of the dataset, and visualize and interpret results. In particular, we have developed an advanced visualization tool for flexible and intuitive interaction with the dataset, including functionality for displaying association rules and variable distributions","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Visual Approach for Spatio-Temporal Data Mining\",\"authors\":\"Mohand Tahar Kechadi, M. Bertolotto\",\"doi\":\"10.1109/IRI.2006.252465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a system for mining very large spatio-temporal datasets. The system comprises new techniques to efficiently support the data-mining process, address the spatial and temporal dimensions of the dataset, and visualize and interpret results. In particular, we have developed an advanced visualization tool for flexible and intuitive interaction with the dataset, including functionality for displaying association rules and variable distributions\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一个用于挖掘超大时空数据集的系统。该系统采用新技术来有效地支持数据挖掘过程,处理数据集的空间和时间维度,并将结果可视化和解释。特别是,我们开发了一种先进的可视化工具,用于与数据集进行灵活和直观的交互,包括显示关联规则和变量分布的功能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Visual Approach for Spatio-Temporal Data Mining
In this paper, we propose a system for mining very large spatio-temporal datasets. The system comprises new techniques to efficiently support the data-mining process, address the spatial and temporal dimensions of the dataset, and visualize and interpret results. In particular, we have developed an advanced visualization tool for flexible and intuitive interaction with the dataset, including functionality for displaying association rules and variable distributions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信