利用空间和尺度上的关系信息区分许多相似特征

Timothy S. Y. Gan, T. Drummond
{"title":"利用空间和尺度上的关系信息区分许多相似特征","authors":"Timothy S. Y. Gan, T. Drummond","doi":"10.1109/ICPR.2006.449","DOIUrl":null,"url":null,"abstract":"We present an approach for differentiating between large numbers of similar feature points. The approach employs a learning strategy which utilizes mutual information to yield relational information or structure between feature points. It learns an ordered list of jumps in space and scale which is used for differentiation. To test the viability and potential of the approach, two datasets containing faces and objects were used","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentiating Between Many Similar Features using Relational Information in Space and Scale\",\"authors\":\"Timothy S. Y. Gan, T. Drummond\",\"doi\":\"10.1109/ICPR.2006.449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach for differentiating between large numbers of similar feature points. The approach employs a learning strategy which utilizes mutual information to yield relational information or structure between feature points. It learns an ordered list of jumps in space and scale which is used for differentiation. To test the viability and potential of the approach, two datasets containing faces and objects were used\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种区分大量相似特征点的方法。该方法采用一种学习策略,利用互信息生成特征点之间的关系信息或结构。它学习了空间和尺度上跳跃的有序列表用于微分。为了测试该方法的可行性和潜力,使用了包含人脸和物体的两个数据集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentiating Between Many Similar Features using Relational Information in Space and Scale
We present an approach for differentiating between large numbers of similar feature points. The approach employs a learning strategy which utilizes mutual information to yield relational information or structure between feature points. It learns an ordered list of jumps in space and scale which is used for differentiation. To test the viability and potential of the approach, two datasets containing faces and objects were used
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信