Pedro J. Freire, M. Anderson, B. Spinnler, T. Bex, J. Prilepsky, T. Eriksson, N. Costa, W. Schairer, Michaela Blott, A. Napoli, S. Turitsyn
{"title":"相干光传输系统中基于神经网络的非线性抑制均衡器的FPGA实现","authors":"Pedro J. Freire, M. Anderson, B. Spinnler, T. Bex, J. Prilepsky, T. Eriksson, N. Costa, W. Schairer, Michaela Blott, A. Napoli, S. Turitsyn","doi":"10.48550/arXiv.2206.12180","DOIUrl":null,"url":null,"abstract":"For the first time, recurrent and feedforward neural network-based equalizers for nonlinearity compensation are implemented in an FPGA, with a level of complexity comparable to that of a dispersion equalizer. We demonstrate that the NN-based equalizers can outperform a 1-step-per-span DBP.","PeriodicalId":225632,"journal":{"name":"2022 European Conference on Optical Communication (ECOC)","volume":"95 1 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in Coherent Optical Transmission Systems\",\"authors\":\"Pedro J. Freire, M. Anderson, B. Spinnler, T. Bex, J. Prilepsky, T. Eriksson, N. Costa, W. Schairer, Michaela Blott, A. Napoli, S. Turitsyn\",\"doi\":\"10.48550/arXiv.2206.12180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, recurrent and feedforward neural network-based equalizers for nonlinearity compensation are implemented in an FPGA, with a level of complexity comparable to that of a dispersion equalizer. We demonstrate that the NN-based equalizers can outperform a 1-step-per-span DBP.\",\"PeriodicalId\":225632,\"journal\":{\"name\":\"2022 European Conference on Optical Communication (ECOC)\",\"volume\":\"95 1 Suppl 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 European Conference on Optical Communication (ECOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.12180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 European Conference on Optical Communication (ECOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.12180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards FPGA Implementation of Neural Network-Based Nonlinearity Mitigation Equalizers in Coherent Optical Transmission Systems
For the first time, recurrent and feedforward neural network-based equalizers for nonlinearity compensation are implemented in an FPGA, with a level of complexity comparable to that of a dispersion equalizer. We demonstrate that the NN-based equalizers can outperform a 1-step-per-span DBP.