覆盖由两个不相交的矩形组成的点集

Sang-Sub Kim, S. Bae, Hee-Kap Ahn
{"title":"覆盖由两个不相交的矩形组成的点集","authors":"Sang-Sub Kim, S. Bae, Hee-Kap Ahn","doi":"10.1142/S0218195911003676","DOIUrl":null,"url":null,"abstract":"Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Covering a Point Set by Two Disjoint Rectangles\",\"authors\":\"Sang-Sub Kim, S. Bae, Hee-Kap Ahn\",\"doi\":\"10.1142/S0218195911003676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.\",\"PeriodicalId\":285210,\"journal\":{\"name\":\"International Journal of Computational Geometry and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218195911003676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218195911003676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

给定平面上n个点的集合S,不相交的两个矩形覆盖问题是找到一对不相交的矩形,使它们的并集包含S,并且较大矩形的面积最小。本文考虑了该优化问题的两种变体:(1)允许矩形自由重定向,但限制它们彼此平行;(2)限制一个矩形轴平行,但允许另一个矩形自由重定向。对于这两个问题,我们提出了使用O(n)空间的O(n2log n)时间算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covering a Point Set by Two Disjoint Rectangles
Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信