{"title":"覆盖由两个不相交的矩形组成的点集","authors":"Sang-Sub Kim, S. Bae, Hee-Kap Ahn","doi":"10.1142/S0218195911003676","DOIUrl":null,"url":null,"abstract":"Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.","PeriodicalId":285210,"journal":{"name":"International Journal of Computational Geometry and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Covering a Point Set by Two Disjoint Rectangles\",\"authors\":\"Sang-Sub Kim, S. Bae, Hee-Kap Ahn\",\"doi\":\"10.1142/S0218195911003676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.\",\"PeriodicalId\":285210,\"journal\":{\"name\":\"International Journal of Computational Geometry and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218195911003676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218195911003676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a set S of n points in the plane, the disjoint two-rectangle covering problem is to find a pair of disjoint rectangles such that their union contains S and the area of the larger rectangle is minimized. In this paper we consider two variants of this optimization problem: (1) the rectangles are allowed to be reoriented freely while restricting them to be parallel to each other, and (2) one rectangle is restricted to be axis-parallel but the other rectangle is allowed to be reoriented freely. For both of the problems, we present O(n2log n)-time algorithms using O(n) space.