基于深度学习和交叉关注的风电短期预测混合模型

Yiqin Zhang, Cheng Peng
{"title":"基于深度学习和交叉关注的风电短期预测混合模型","authors":"Yiqin Zhang, Cheng Peng","doi":"10.1109/REPE55559.2022.9948810","DOIUrl":null,"url":null,"abstract":"New energy is a substitute for traditional energy in the coming decades, but its stability is poor. Power generation forecasting is an effective way to mitigate its negative effects. This paper proposed a wind power generation prediction model algorithm independent of meteorological data and propose a new way to build the cross-attention mechanism and perform a better result. We introduce a three-year wind farm dataset and apply out model to it, which facilitate feasibility analysis.","PeriodicalId":115453,"journal":{"name":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","volume":"632 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Model based on Deep Learning and Cross-attention for Short-term Wind Power Prediction\",\"authors\":\"Yiqin Zhang, Cheng Peng\",\"doi\":\"10.1109/REPE55559.2022.9948810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New energy is a substitute for traditional energy in the coming decades, but its stability is poor. Power generation forecasting is an effective way to mitigate its negative effects. This paper proposed a wind power generation prediction model algorithm independent of meteorological data and propose a new way to build the cross-attention mechanism and perform a better result. We introduce a three-year wind farm dataset and apply out model to it, which facilitate feasibility analysis.\",\"PeriodicalId\":115453,\"journal\":{\"name\":\"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)\",\"volume\":\"632 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REPE55559.2022.9948810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Renewable Energy and Power Engineering (REPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REPE55559.2022.9948810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新能源是未来几十年传统能源的替代品,但其稳定性较差。发电预测是缓解其负面影响的有效途径。本文提出了一种独立于气象数据的风力发电预测模型算法,提出了一种建立交叉关注机制的新方法,并取得了较好的预测效果。我们引入了一个三年的风电场数据集,并将我们的模型应用于该数据集,便于进行可行性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Model based on Deep Learning and Cross-attention for Short-term Wind Power Prediction
New energy is a substitute for traditional energy in the coming decades, but its stability is poor. Power generation forecasting is an effective way to mitigate its negative effects. This paper proposed a wind power generation prediction model algorithm independent of meteorological data and propose a new way to build the cross-attention mechanism and perform a better result. We introduce a three-year wind farm dataset and apply out model to it, which facilitate feasibility analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信