位矢量编码通过分解

ACM-SE 20 Pub Date : 1982-04-01 DOI:10.1145/503896.503933
R. Jeffords
{"title":"位矢量编码通过分解","authors":"R. Jeffords","doi":"10.1145/503896.503933","DOIUrl":null,"url":null,"abstract":"The decomposition encoding of an n-bit vector V is an approach to the problem of how best to encode a bit vector under the constraints that this vector be encoded into blocks of t bits, and that access time for each bit of the original vector be constant, i.e. \"random access.\" This method involves encoding the vector as two separate matrices F1 and F2. Essential to the method is the decomposition of N--the indexing set for V--by means of an injection (h1,h2): N --> R1 x R2 : m │--> (h1(m),h2(m)). Decoding involves some simply computed function f(F1[h1(m);],F2[h2(m);]). The emphasis in this paper is upon compact encodings for static vectors. For one choice of f--XOR decomposition encoding--it is shown by linear algebraic techniques that a decomposition encoding requiring the minimal t for a given (h1,h2) pair can be determined. Of more practical interest is minimization of the total number of bits in the encoding for all possible injections (h1,h2). Experimental results using a number of easily computed (h1,h2) pairs show that compactions to one half of the ordinary packed representation can be achieved via decomposition encoding for relatively sparse bit vectors.","PeriodicalId":184493,"journal":{"name":"ACM-SE 20","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1982-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bit vector encoding via decomposition\",\"authors\":\"R. Jeffords\",\"doi\":\"10.1145/503896.503933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decomposition encoding of an n-bit vector V is an approach to the problem of how best to encode a bit vector under the constraints that this vector be encoded into blocks of t bits, and that access time for each bit of the original vector be constant, i.e. \\\"random access.\\\" This method involves encoding the vector as two separate matrices F1 and F2. Essential to the method is the decomposition of N--the indexing set for V--by means of an injection (h1,h2): N --> R1 x R2 : m │--> (h1(m),h2(m)). Decoding involves some simply computed function f(F1[h1(m);],F2[h2(m);]). The emphasis in this paper is upon compact encodings for static vectors. For one choice of f--XOR decomposition encoding--it is shown by linear algebraic techniques that a decomposition encoding requiring the minimal t for a given (h1,h2) pair can be determined. Of more practical interest is minimization of the total number of bits in the encoding for all possible injections (h1,h2). Experimental results using a number of easily computed (h1,h2) pairs show that compactions to one half of the ordinary packed representation can be achieved via decomposition encoding for relatively sparse bit vectors.\",\"PeriodicalId\":184493,\"journal\":{\"name\":\"ACM-SE 20\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 20\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/503896.503933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 20","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503896.503933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

n位向量V的分解编码是一种解决如何在约束下对位向量进行最佳编码的方法,该约束是将该向量编码为t位的块,并且原始向量的每个位的访问时间为常数,即。“随机访问。”这种方法涉及到将向量编码为两个单独的矩阵F1和F2。该方法的关键是通过注入(h1,h2)分解N——V的索引集:N—> R1 x R2: m│—> (h1(m),h2(m))。解码涉及到一些简单的计算函数f(F1[h1(m);],F2[h2(m);])。本文的重点是静态向量的压缩编码。对于f的一种选择——XOR分解编码——线性代数技术表明,对于给定的(h1,h2)对,可以确定需要最小t的分解编码。更实际的兴趣是最小化编码中所有可能的注入(h1,h2)的总比特数。使用一些易于计算的(h1,h2)对的实验结果表明,通过对相对稀疏的位向量进行分解编码,可以实现对普通打包表示的一半的压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bit vector encoding via decomposition
The decomposition encoding of an n-bit vector V is an approach to the problem of how best to encode a bit vector under the constraints that this vector be encoded into blocks of t bits, and that access time for each bit of the original vector be constant, i.e. "random access." This method involves encoding the vector as two separate matrices F1 and F2. Essential to the method is the decomposition of N--the indexing set for V--by means of an injection (h1,h2): N --> R1 x R2 : m │--> (h1(m),h2(m)). Decoding involves some simply computed function f(F1[h1(m);],F2[h2(m);]). The emphasis in this paper is upon compact encodings for static vectors. For one choice of f--XOR decomposition encoding--it is shown by linear algebraic techniques that a decomposition encoding requiring the minimal t for a given (h1,h2) pair can be determined. Of more practical interest is minimization of the total number of bits in the encoding for all possible injections (h1,h2). Experimental results using a number of easily computed (h1,h2) pairs show that compactions to one half of the ordinary packed representation can be achieved via decomposition encoding for relatively sparse bit vectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信