具有块传输的分层存储器

A. Aggarwal, A. K. Chandra, M. Snir
{"title":"具有块传输的分层存储器","authors":"A. Aggarwal, A. K. Chandra, M. Snir","doi":"10.1109/SFCS.1987.31","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a model of Hierarchical Memory with Block Transfer (BT for short). It is like a random access machine, except that access to location x takes time f(x), and a block of consecutive locations can be copied from memory to memory, taking one unit of time per element after the initial access time. We first study the model with f(x) = xα for 0 ≪ α ≪ 1. A tight bound of θ(n log log n) is shown for many simple problems: reading each input, dot product, shuffle exchange, and merging two sorted lists. The same bound holds for transposing a √n × √n matrix; we use this to compute an FFT graph in optimal θ(n log n) time. An optimal θ(n log n) sorting algorithm is also shown. Some additional issues considered are: maintaining data structures such as dictionaries, DAG simulation, and connections with PRAMs. Next we study the model f(x) = x. Using techniques similar to those developed for the previous model, we show tight bounds of θ(n log n) for the simple problems mentioned above, and provide a new technique that yields optimal lower bounds of Ω(n log2n) for sorting, computing an FFT graph, and for matrix transposition. We also obtain optimal bounds for the model f(x)= xα with α ≫ 1. Finally, we study the model f(x) = log x and obtain optimal bounds of θ(n log*n) for simple problems mentioned above and of θ(n log n) for sorting, computing an FFT graph, and for some permutations.","PeriodicalId":153779,"journal":{"name":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"201","resultStr":"{\"title\":\"Hierarchical memory with block transfer\",\"authors\":\"A. Aggarwal, A. K. Chandra, M. Snir\",\"doi\":\"10.1109/SFCS.1987.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a model of Hierarchical Memory with Block Transfer (BT for short). It is like a random access machine, except that access to location x takes time f(x), and a block of consecutive locations can be copied from memory to memory, taking one unit of time per element after the initial access time. We first study the model with f(x) = xα for 0 ≪ α ≪ 1. A tight bound of θ(n log log n) is shown for many simple problems: reading each input, dot product, shuffle exchange, and merging two sorted lists. The same bound holds for transposing a √n × √n matrix; we use this to compute an FFT graph in optimal θ(n log n) time. An optimal θ(n log n) sorting algorithm is also shown. Some additional issues considered are: maintaining data structures such as dictionaries, DAG simulation, and connections with PRAMs. Next we study the model f(x) = x. Using techniques similar to those developed for the previous model, we show tight bounds of θ(n log n) for the simple problems mentioned above, and provide a new technique that yields optimal lower bounds of Ω(n log2n) for sorting, computing an FFT graph, and for matrix transposition. We also obtain optimal bounds for the model f(x)= xα with α ≫ 1. Finally, we study the model f(x) = log x and obtain optimal bounds of θ(n log*n) for simple problems mentioned above and of θ(n log n) for sorting, computing an FFT graph, and for some permutations.\",\"PeriodicalId\":153779,\"journal\":{\"name\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"201\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1987.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Annual Symposium on Foundations of Computer Science (sfcs 1987)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1987.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 201

摘要

本文介绍了一种带块传输(BT)的分层存储模型。它类似于随机存取机,只是访问位置x需要时间f(x),并且可以将一个连续的位置块从内存复制到内存,在初始访问时间之后每个元素需要一个单位的时间。我们首先研究了0≪α≪1时f(x) = xα的型号。对于许多简单的问题,θ(n log log n)的紧密界被显示出来:读取每个输入,点积,洗牌交换,合并两个排序列表。对√n ×√n矩阵的转置也成立;我们用它来计算最优θ(n log n)时间内的FFT图。给出了一个最优的θ(n log n)排序算法。考虑的其他一些问题包括:维护数据结构(如字典)、DAG模拟以及与pram的连接。接下来,我们研究模型f(x) = x。使用类似于先前模型开发的技术,我们为上面提到的简单问题展示了θ(n log n)的紧密边界,并提供了一种新的技术,该技术为排序,计算FFT图和矩阵转置提供了Ω(n log2n)的最佳下界。我们也得到了模型f(x)= xα的最优边界。最后,我们研究了f(x) = log x模型,得到了对于上述简单问题θ(n log*n)的最优界,以及对于排序、计算FFT图和某些排列的θ(n log n)的最优界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical memory with block transfer
In this paper we introduce a model of Hierarchical Memory with Block Transfer (BT for short). It is like a random access machine, except that access to location x takes time f(x), and a block of consecutive locations can be copied from memory to memory, taking one unit of time per element after the initial access time. We first study the model with f(x) = xα for 0 ≪ α ≪ 1. A tight bound of θ(n log log n) is shown for many simple problems: reading each input, dot product, shuffle exchange, and merging two sorted lists. The same bound holds for transposing a √n × √n matrix; we use this to compute an FFT graph in optimal θ(n log n) time. An optimal θ(n log n) sorting algorithm is also shown. Some additional issues considered are: maintaining data structures such as dictionaries, DAG simulation, and connections with PRAMs. Next we study the model f(x) = x. Using techniques similar to those developed for the previous model, we show tight bounds of θ(n log n) for the simple problems mentioned above, and provide a new technique that yields optimal lower bounds of Ω(n log2n) for sorting, computing an FFT graph, and for matrix transposition. We also obtain optimal bounds for the model f(x)= xα with α ≫ 1. Finally, we study the model f(x) = log x and obtain optimal bounds of θ(n log*n) for simple problems mentioned above and of θ(n log n) for sorting, computing an FFT graph, and for some permutations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信