信用缺口估算何时可靠?

Elena Deryugina, A. Ponomarenko, Anna Rozhkova
{"title":"信用缺口估算何时可靠?","authors":"Elena Deryugina, A. Ponomarenko, Anna Rozhkova","doi":"10.2139/ssrn.3210263","DOIUrl":null,"url":null,"abstract":"Abstract We evaluate the reliability of credit gap measures estimated over time samples of different lengths. We augment our empirical analysis (which turned out to be somewhat inconclusive) with Monte Carlo experiments. For this purpose we build an agent-based model that realistically reproduces credit cycles and use it to generate the artificial data set. We found that 12–15 years of available data is sufficient for the estimation of reliable credit gaps (i.e. the reliability of credit gap estimates will not improve substantially as more data are added to the sample).","PeriodicalId":376194,"journal":{"name":"ERN: Regulation & Supervision (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"When are Credit Gap Estimates Reliable?\",\"authors\":\"Elena Deryugina, A. Ponomarenko, Anna Rozhkova\",\"doi\":\"10.2139/ssrn.3210263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We evaluate the reliability of credit gap measures estimated over time samples of different lengths. We augment our empirical analysis (which turned out to be somewhat inconclusive) with Monte Carlo experiments. For this purpose we build an agent-based model that realistically reproduces credit cycles and use it to generate the artificial data set. We found that 12–15 years of available data is sufficient for the estimation of reliable credit gaps (i.e. the reliability of credit gap estimates will not improve substantially as more data are added to the sample).\",\"PeriodicalId\":376194,\"journal\":{\"name\":\"ERN: Regulation & Supervision (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Regulation & Supervision (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3210263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Regulation & Supervision (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3210263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文评估了不同时间样本估计的信用缺口测度的可靠性。我们用蒙特卡罗实验增强了我们的实证分析(结果有些不确定)。为此,我们建立了一个真实再现信贷周期的基于代理的模型,并用它来生成人工数据集。我们发现,12-15年的可用数据足以估计可靠的信用缺口(即信用缺口估计的可靠性不会随着更多数据添加到样本中而大幅提高)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When are Credit Gap Estimates Reliable?
Abstract We evaluate the reliability of credit gap measures estimated over time samples of different lengths. We augment our empirical analysis (which turned out to be somewhat inconclusive) with Monte Carlo experiments. For this purpose we build an agent-based model that realistically reproduces credit cycles and use it to generate the artificial data set. We found that 12–15 years of available data is sufficient for the estimation of reliable credit gaps (i.e. the reliability of credit gap estimates will not improve substantially as more data are added to the sample).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信