改进deepplabv3 +高地鼠洞分割场景

Jin Yunpeng, Ou Weiyou, Li Haiyang, Li Kai, Jiang Jieteng, L. Chunmei
{"title":"改进deepplabv3 +高地鼠洞分割场景","authors":"Jin Yunpeng, Ou Weiyou, Li Haiyang, Li Kai, Jiang Jieteng, L. Chunmei","doi":"10.1117/12.2655924","DOIUrl":null,"url":null,"abstract":"The rodent infestation problem is currently one of the important factors in the degradation of grassland in the Sanjiangyuan area. We need to infer the degradation of grassland by the area of grassland being gnawed, and thus provide help for grassland restoration work. To this end we have designed a DeeplabV3+ based mouse infestation scene segmentation method. On the basis of Deeplabv3+, different backbone feature extraction networks are adopted, and attention mechanism is introduced into the backbone to improve the accuracy of feature extraction and solve the problem of sample imbalance in our self-made dataset. For the training and validation of this network, we used a self-developed photographed and produced dataset of the distribution of mouse holes in the grassland pastures of Haibei, Qinghai Province, which contains various features of plateau mouse infestation. The model improvement resulted in a significant reduction in the training time of Deeplabv3+ on this dataset, and a certain degree of improvement in segmentation accuracy.","PeriodicalId":319882,"journal":{"name":"Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Deeplabv3+ for highland mouse holes segmentation scenarios\",\"authors\":\"Jin Yunpeng, Ou Weiyou, Li Haiyang, Li Kai, Jiang Jieteng, L. Chunmei\",\"doi\":\"10.1117/12.2655924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rodent infestation problem is currently one of the important factors in the degradation of grassland in the Sanjiangyuan area. We need to infer the degradation of grassland by the area of grassland being gnawed, and thus provide help for grassland restoration work. To this end we have designed a DeeplabV3+ based mouse infestation scene segmentation method. On the basis of Deeplabv3+, different backbone feature extraction networks are adopted, and attention mechanism is introduced into the backbone to improve the accuracy of feature extraction and solve the problem of sample imbalance in our self-made dataset. For the training and validation of this network, we used a self-developed photographed and produced dataset of the distribution of mouse holes in the grassland pastures of Haibei, Qinghai Province, which contains various features of plateau mouse infestation. The model improvement resulted in a significant reduction in the training time of Deeplabv3+ on this dataset, and a certain degree of improvement in segmentation accuracy.\",\"PeriodicalId\":319882,\"journal\":{\"name\":\"Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2655924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2655924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Deeplabv3+ for highland mouse holes segmentation scenarios
The rodent infestation problem is currently one of the important factors in the degradation of grassland in the Sanjiangyuan area. We need to infer the degradation of grassland by the area of grassland being gnawed, and thus provide help for grassland restoration work. To this end we have designed a DeeplabV3+ based mouse infestation scene segmentation method. On the basis of Deeplabv3+, different backbone feature extraction networks are adopted, and attention mechanism is introduced into the backbone to improve the accuracy of feature extraction and solve the problem of sample imbalance in our self-made dataset. For the training and validation of this network, we used a self-developed photographed and produced dataset of the distribution of mouse holes in the grassland pastures of Haibei, Qinghai Province, which contains various features of plateau mouse infestation. The model improvement resulted in a significant reduction in the training time of Deeplabv3+ on this dataset, and a certain degree of improvement in segmentation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信