Oscar:一种基于语义的数据分组方法

V. Setlur, M. Correll, S. Battersby
{"title":"Oscar:一种基于语义的数据分组方法","authors":"V. Setlur, M. Correll, S. Battersby","doi":"10.1109/VIS54862.2022.00029","DOIUrl":null,"url":null,"abstract":"Binning is applied to categorize data values or to see distributions of data. Existing binning algorithms often rely on statistical properties of data. However, there are semantic considerations for selecting appropriate binning schemes. Surveys, for instance, gather respon-dent data for demographic-related questions such as age, salary, number of employees, etc., that are bucketed into defined semantic categories. In this paper, we leverage common semantic categories from survey data and Tableau Public visualizations to identify a set of semantic binning categories. We employ these semantic binning categories in Oscar: a method for automatically selecting bins based on the inferred semantic type of the field. We conducted a crowdsourced study with 120 participants to better understand user preferences for bins generated by Oscar vs. binning provided in Tableau. We find that maps and histograms using binned values generated by Oscar are preferred by users as compared to binning schemes based purely on the statistical properties of the data.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Oscar: A Semantic-based Data Binning Approach\",\"authors\":\"V. Setlur, M. Correll, S. Battersby\",\"doi\":\"10.1109/VIS54862.2022.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binning is applied to categorize data values or to see distributions of data. Existing binning algorithms often rely on statistical properties of data. However, there are semantic considerations for selecting appropriate binning schemes. Surveys, for instance, gather respon-dent data for demographic-related questions such as age, salary, number of employees, etc., that are bucketed into defined semantic categories. In this paper, we leverage common semantic categories from survey data and Tableau Public visualizations to identify a set of semantic binning categories. We employ these semantic binning categories in Oscar: a method for automatically selecting bins based on the inferred semantic type of the field. We conducted a crowdsourced study with 120 participants to better understand user preferences for bins generated by Oscar vs. binning provided in Tableau. We find that maps and histograms using binned values generated by Oscar are preferred by users as compared to binning schemes based purely on the statistical properties of the data.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分箱用于对数据值进行分类或查看数据的分布。现有的分箱算法通常依赖于数据的统计特性。然而,在选择合适的分组方案时需要考虑语义问题。例如,调查收集与人口统计相关的问题(如年龄、工资、雇员人数等)的受访者数据,这些数据被归入定义的语义类别。在本文中,我们利用来自调查数据和Tableau Public可视化的常见语义类别来识别一组语义分类。我们在Oscar中使用了这些语义分类:一种基于推断的字段语义类型自动选择箱子的方法。我们对120名参与者进行了一项众包研究,以更好地了解用户对Oscar生成的垃圾箱和Tableau提供的垃圾箱的偏好。我们发现,与纯粹基于数据统计属性的分箱方案相比,用户更喜欢使用Oscar生成的分箱值的地图和直方图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscar: A Semantic-based Data Binning Approach
Binning is applied to categorize data values or to see distributions of data. Existing binning algorithms often rely on statistical properties of data. However, there are semantic considerations for selecting appropriate binning schemes. Surveys, for instance, gather respon-dent data for demographic-related questions such as age, salary, number of employees, etc., that are bucketed into defined semantic categories. In this paper, we leverage common semantic categories from survey data and Tableau Public visualizations to identify a set of semantic binning categories. We employ these semantic binning categories in Oscar: a method for automatically selecting bins based on the inferred semantic type of the field. We conducted a crowdsourced study with 120 participants to better understand user preferences for bins generated by Oscar vs. binning provided in Tableau. We find that maps and histograms using binned values generated by Oscar are preferred by users as compared to binning schemes based purely on the statistical properties of the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信