{"title":"利用纹理映射图形硬件的代数重建技术(ART)快速三维锥形梁重建","authors":"Klaus Mueller, R. Yagel","doi":"10.1109/NSSMIC.1998.773839","DOIUrl":null,"url":null,"abstract":"The Algebraic Reconstruction Technique (ART) reconstructs a 2D or 3D object from its projections. It has, in certain scenarios, many advantages over the more popular Filtered Backprojection approaches and has also recently been shown to perform well for 3D cone-beam reconstruction. However, so far ART's slow speed has prohibited its routine use in clinical applications. Here, the authors devise a new hardware acceleration scheme, employing readily available texture mapping graphics hardware, that allows quality 3D cone-beam reconstructions to be obtained at almost interactive speeds.","PeriodicalId":129202,"journal":{"name":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Rapid 3D cone-beam reconstruction with the Algebraic Reconstruction Technique (ART) by utilizing texture mapping graphics hardware\",\"authors\":\"Klaus Mueller, R. Yagel\",\"doi\":\"10.1109/NSSMIC.1998.773839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Algebraic Reconstruction Technique (ART) reconstructs a 2D or 3D object from its projections. It has, in certain scenarios, many advantages over the more popular Filtered Backprojection approaches and has also recently been shown to perform well for 3D cone-beam reconstruction. However, so far ART's slow speed has prohibited its routine use in clinical applications. Here, the authors devise a new hardware acceleration scheme, employing readily available texture mapping graphics hardware, that allows quality 3D cone-beam reconstructions to be obtained at almost interactive speeds.\",\"PeriodicalId\":129202,\"journal\":{\"name\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.1998.773839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.1998.773839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid 3D cone-beam reconstruction with the Algebraic Reconstruction Technique (ART) by utilizing texture mapping graphics hardware
The Algebraic Reconstruction Technique (ART) reconstructs a 2D or 3D object from its projections. It has, in certain scenarios, many advantages over the more popular Filtered Backprojection approaches and has also recently been shown to perform well for 3D cone-beam reconstruction. However, so far ART's slow speed has prohibited its routine use in clinical applications. Here, the authors devise a new hardware acceleration scheme, employing readily available texture mapping graphics hardware, that allows quality 3D cone-beam reconstructions to be obtained at almost interactive speeds.