塔特上同调

Tate Cohomology, Dino Zavattini
{"title":"塔特上同调","authors":"Tate Cohomology, Dino Zavattini","doi":"10.1090/surv/262/07","DOIUrl":null,"url":null,"abstract":". Tate cohomology is a useful synthesis of group homology and cohomology. It has applications in class field theory—in particular in proving the Artin reciprocity—as well as in the study of Tate spectra. In this paper we provide three equivalent definitions of Tate cohomology and define the cup product on it.","PeriodicalId":121714,"journal":{"name":"Maximal Cohen–Macaulay Modules and Tate Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Tate cohomology\",\"authors\":\"Tate Cohomology, Dino Zavattini\",\"doi\":\"10.1090/surv/262/07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Tate cohomology is a useful synthesis of group homology and cohomology. It has applications in class field theory—in particular in proving the Artin reciprocity—as well as in the study of Tate spectra. In this paper we provide three equivalent definitions of Tate cohomology and define the cup product on it.\",\"PeriodicalId\":121714,\"journal\":{\"name\":\"Maximal Cohen–Macaulay Modules and Tate Cohomology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maximal Cohen–Macaulay Modules and Tate Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/surv/262/07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maximal Cohen–Macaulay Modules and Tate Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/surv/262/07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 塔特上同调是群同调和上同调的一种有用的综合。它在类场论——特别是在证明阿廷互向性方面——以及在研究泰特谱方面都有应用。本文给出了Tate上同的三个等价定义,并在其上定义了杯积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Tate cohomology
. Tate cohomology is a useful synthesis of group homology and cohomology. It has applications in class field theory—in particular in proving the Artin reciprocity—as well as in the study of Tate spectra. In this paper we provide three equivalent definitions of Tate cohomology and define the cup product on it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信