A. Venturi, Dario Stabili, Francesco Pollicino, Emanuele Bianchi, Mirco Marchetti
{"title":"基于机器学习的控制器局域网异常检测器比较","authors":"A. Venturi, Dario Stabili, Francesco Pollicino, Emanuele Bianchi, Mirco Marchetti","doi":"10.1109/NCA57778.2022.10013527","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.","PeriodicalId":251728,"journal":{"name":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison of Machine Learning-based anomaly detectors for Controller Area Network\",\"authors\":\"A. Venturi, Dario Stabili, Francesco Pollicino, Emanuele Bianchi, Mirco Marchetti\",\"doi\":\"10.1109/NCA57778.2022.10013527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.\",\"PeriodicalId\":251728,\"journal\":{\"name\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCA57778.2022.10013527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st International Symposium on Network Computing and Applications (NCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA57778.2022.10013527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Machine Learning-based anomaly detectors for Controller Area Network
This paper presents a comparative analysis of different Machine Learning-based detection algorithms designed for Controller Area Network (CAN) communication on three different datasets. This work focuses on addressing the current limitations of related scientific literature, related to the quality of the publicly available datasets and to the lack of public implementations of the detection solutions presented in literature. Since these issues are preventing the reproducibility of published results and their comparison with novel detection solutions, we remark that it is necessary that all security researchers working in this field start to address them properly to advance the current state-of-the-art in CAN intrusion detection systems. This paper strives to solve these issues by presenting a comparison of existing works on publicly available datasets.