大数据云存储中突发错误的快速映射约简算法

Xue Qin, B. Kelley, M. Saedy
{"title":"大数据云存储中突发错误的快速映射约简算法","authors":"Xue Qin, B. Kelley, M. Saedy","doi":"10.1109/SYSOSE.2015.7151912","DOIUrl":null,"url":null,"abstract":"In distributed storage for Big Data systems, there is a need for exact repair, high bandwidth codes. The challenge for exact repair in big-data storage is to simultaneously enable both very high bandwidth repair using Map-Reduce and simple coding schemes that also combine robust maximally distance separable (MDS) exact repair. MDS repair is for the rare, but exceptional outlier error patterns requiring optimum erasure code reconstruction. We construct the optimum fast bandwidth repair for big-data sources. Our system uses Map-Reduce, exact repair reconstruction. The algorithm combines MDS with a second fast decode algorithm in a cloud environment. We illustrate cloud experiments for optimum fast bandwidth reconstruction for 1-Exabyte Big Data in the cloud and demonstrate cloud results for Poisson error rate arrival models. Unlike prior methods, we jointly solve the problem of fast bandwidth repair for burst-memory error patterns and for code rates up to - in a real time error model framework for Big Data. Furthermore, simulations indicate this method outperforms prior fast bandwidth approaches for burst errors. We also illustrate Map-Reduce algorithm optimized for fast bandwidth repair in Big Data storage in clouds.","PeriodicalId":399744,"journal":{"name":"2015 10th System of Systems Engineering Conference (SoSE)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A fast map-reduce algorithm for burst errors in big data cloud storage\",\"authors\":\"Xue Qin, B. Kelley, M. Saedy\",\"doi\":\"10.1109/SYSOSE.2015.7151912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In distributed storage for Big Data systems, there is a need for exact repair, high bandwidth codes. The challenge for exact repair in big-data storage is to simultaneously enable both very high bandwidth repair using Map-Reduce and simple coding schemes that also combine robust maximally distance separable (MDS) exact repair. MDS repair is for the rare, but exceptional outlier error patterns requiring optimum erasure code reconstruction. We construct the optimum fast bandwidth repair for big-data sources. Our system uses Map-Reduce, exact repair reconstruction. The algorithm combines MDS with a second fast decode algorithm in a cloud environment. We illustrate cloud experiments for optimum fast bandwidth reconstruction for 1-Exabyte Big Data in the cloud and demonstrate cloud results for Poisson error rate arrival models. Unlike prior methods, we jointly solve the problem of fast bandwidth repair for burst-memory error patterns and for code rates up to - in a real time error model framework for Big Data. Furthermore, simulations indicate this method outperforms prior fast bandwidth approaches for burst errors. We also illustrate Map-Reduce algorithm optimized for fast bandwidth repair in Big Data storage in clouds.\",\"PeriodicalId\":399744,\"journal\":{\"name\":\"2015 10th System of Systems Engineering Conference (SoSE)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th System of Systems Engineering Conference (SoSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYSOSE.2015.7151912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th System of Systems Engineering Conference (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2015.7151912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在大数据系统的分布式存储中,需要精确的修复,高带宽的代码。在大数据存储中,精确修复的挑战是同时使用Map-Reduce实现非常高的带宽修复和简单的编码方案,这些方案还结合了鲁棒的最大距离可分离(MDS)精确修复。MDS修复是为罕见的,但例外的异常错误模式需要最佳的擦除代码重建。构建大数据源的最优快速带宽修复。我们的系统使用Map-Reduce,精确修复重建。该算法将MDS与云环境下的第二种快速解码算法相结合。我们举例说明了在云中对1- eb大数据进行最佳快速带宽重建的云实验,并演示了泊松错误率到达模型的云结果。与之前的方法不同,我们在大数据实时错误模型框架中共同解决了突发内存错误模式和码率高达-的快速带宽修复问题。此外,仿真结果表明,该方法在处理突发错误时优于先前的快速带宽方法。我们还演示了Map-Reduce算法在云大数据存储中的快速带宽修复优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast map-reduce algorithm for burst errors in big data cloud storage
In distributed storage for Big Data systems, there is a need for exact repair, high bandwidth codes. The challenge for exact repair in big-data storage is to simultaneously enable both very high bandwidth repair using Map-Reduce and simple coding schemes that also combine robust maximally distance separable (MDS) exact repair. MDS repair is for the rare, but exceptional outlier error patterns requiring optimum erasure code reconstruction. We construct the optimum fast bandwidth repair for big-data sources. Our system uses Map-Reduce, exact repair reconstruction. The algorithm combines MDS with a second fast decode algorithm in a cloud environment. We illustrate cloud experiments for optimum fast bandwidth reconstruction for 1-Exabyte Big Data in the cloud and demonstrate cloud results for Poisson error rate arrival models. Unlike prior methods, we jointly solve the problem of fast bandwidth repair for burst-memory error patterns and for code rates up to - in a real time error model framework for Big Data. Furthermore, simulations indicate this method outperforms prior fast bandwidth approaches for burst errors. We also illustrate Map-Reduce algorithm optimized for fast bandwidth repair in Big Data storage in clouds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信